A variational approximation scheme for the elastodynamic problems in the new class of admissible mappings
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 55-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the variational approximation scheme for the elastodynamic problem in the 3D-case in the new class of admissible mappings which is related to the class of mappings with finite distortion.
Keywords: elastodynamics, mapping with finite distortion, polyconvexity, variational approximation scheme.
@article{VNGU_2016_16_3_a4,
     author = {A. O. Molchanova},
     title = {A variational approximation scheme for the elastodynamic problems in the new class of admissible mappings},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {55--60},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a4/}
}
TY  - JOUR
AU  - A. O. Molchanova
TI  - A variational approximation scheme for the elastodynamic problems in the new class of admissible mappings
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 55
EP  - 60
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a4/
LA  - ru
ID  - VNGU_2016_16_3_a4
ER  - 
%0 Journal Article
%A A. O. Molchanova
%T A variational approximation scheme for the elastodynamic problems in the new class of admissible mappings
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 55-60
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a4/
%G ru
%F VNGU_2016_16_3_a4
A. O. Molchanova. A variational approximation scheme for the elastodynamic problems in the new class of admissible mappings. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 55-60. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a4/

[1] Ball J. M., “Convexity Conditions and Existence Theorems in Nonlinear Elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI

[2] Ball J. M., “Some Open Problems in Elasticity”, Geometry, Mechanics, and Dynamics, eds. P. Newton et al., Springer, N.Y., 2002, 3–59 | DOI

[3] P. G. Ciarlet, Mathematical Elasticity, v. 1, North Holland, Amsterdam, 1993

[4] Dafermos C. M., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin–Heidelberg, 2010

[5] Di Perna R., “Convergence of Approximate Solutions to Conservation Laws”, Arch. Ration. Mech. Anal., 82 (1983), 27–70 | DOI

[6] Demoulini S., Stuart D. M. A., Tzavaras A. E., “A Variational Approximation Scheme for Three Dimensional Elastodynamics with Polyconvex Energy”, Arch. Ration. Mech. Anal., 157 (2001), 324–344 | DOI

[7] De Giorgi E., “New Problems on Minimizing Movements”, Boundary Value Problems for PDEs and Applications, Res. Notes in Appl. Math., 29, 1993, 81–98

[8] Qin T., “Symmetrizing Nonlinear Elasodynamics System”, J. Elasticity, 50 (1998), 245–252 | DOI

[9] Iwaniec T., Šverák V., “On Mappings with Integrable Dilatation”, Proc. Amer. Math. Soc., 118 (1993), 185–188 | DOI

[10] Miroshnikov A., Tzavaras A., “A Variational Approximation Scheme for Radial Polyconvex Elasticity That Preserves the Positivity of Jacobians”, Comm. Math. Sciences, 10:1 (2012), 87–115 | DOI

[11] Molchanova A. O., Vodop'yanov S. K., Variational Problems of Nonlinear Elasticity Theory in Certain Classes of Mappings with Finite Distortion, arXiv: 1508.06825v1

[12] S. K. Vodop'yanov, A. O. Molchanova, “Variational problems of nonlinear elasticity theory in certain classes of mappings with finite distortion”, Dokl. Math., 92:3 (2015), 739–742 | DOI | DOI