Prym differentials on variable torus
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 40-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper are obtained new results by theory multiplicative functions and Prym differentials on variable tori. First are obtained analogues theorem about full sum residues for Prym differentials of every integer order on torus. As corollary are proved a reciprocity laws. All kinds of elementary Prym differentials of every integer order are constructed, which holomorphically depends from moduli tori and characters. Proved analogues Appell's formula decomposition for function with characters. Examined a vector bundles of Prym differentials of every integer order over product Teichmueller spaces for torus and groups of characters.
Keywords: Teichmueller spaces for torus, Prym differentials, characters.
@article{VNGU_2016_16_3_a3,
     author = {T. S. Krepizina and V. V. Chueshev},
     title = {Prym differentials on variable torus},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {40--54},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a3/}
}
TY  - JOUR
AU  - T. S. Krepizina
AU  - V. V. Chueshev
TI  - Prym differentials on variable torus
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 40
EP  - 54
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a3/
LA  - ru
ID  - VNGU_2016_16_3_a3
ER  - 
%0 Journal Article
%A T. S. Krepizina
%A V. V. Chueshev
%T Prym differentials on variable torus
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 40-54
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a3/
%G ru
%F VNGU_2016_16_3_a3
T. S. Krepizina; V. V. Chueshev. Prym differentials on variable torus. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 40-54. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a3/

[1] Appell P., “Sur les Integrales de Fonctions a Multiplicateurs et leur Application an Developpement des Fonctions Abeliennes en Series Trigonometriques”, Acta Math., 13:3/4 (1890), 1–174

[2] Appell P., Lacour E., Principes de la Theorie des Fonctions Elliptiques et Applications, Gauthier-Villars, Paris, 1897

[3] Farkas H. M., Kra I., Riemann Surfaces, Grad. Text's Math., 71, Springer, N.Y., 1992 | DOI

[4] V. V. Chueshev, Multiplicative Functions and Prym Differentials on Variable Riemann Surfaces, v. 2, Kemerovo, 2003 (in Russian)

[5] T. S. Krepitsina, V. V. Chueshev, “Multiplicative functions and Prym differentials on variable torus”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012), 74–90 (in Russian)

[6] L. Ahlfors, L. Bers, Spaces of Riemann Surfaces and Quasiconformal Mappings, Inostrannaya Literatura, M., 1961 (in Russian)

[7] Earle C. J., “Families of Riemann Surfaces and Jacobi Varieties”, Annals of Math., 107 (1978), 255–286 | DOI

[8] T. S. Krepitsina, “Divisors of Prym differentials and Abelian differentials on torus”, Vestn. KemGU, 2011, no. 3/1, 206–211 (in Russian)