Quasielliptic operators and equations not solvable with respect to the highest order derivative
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 15-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of quasielliptic operators in the whole space. Isomorphism properties in special weighted Sobolev spaces are established. We obtain conditions for unique solvability of the quasielliptic equations and estimates for their solutions in more general weighted spaces. Using the established results, we study solvability of the initial value problem for equations not solvable with respect to the highest order derivative.
Keywords:
quasielliptic operators, weighted Sobolev spaces
Mots-clés : isomorphism, Sobolev type equations.
Mots-clés : isomorphism, Sobolev type equations.
@article{VNGU_2016_16_3_a1,
author = {G. V. Demidenko},
title = {Quasielliptic operators and equations not solvable with respect to the highest order derivative},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {15--26},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/}
}
TY - JOUR AU - G. V. Demidenko TI - Quasielliptic operators and equations not solvable with respect to the highest order derivative JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 15 EP - 26 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/ LA - ru ID - VNGU_2016_16_3_a1 ER -
%0 Journal Article %A G. V. Demidenko %T Quasielliptic operators and equations not solvable with respect to the highest order derivative %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 15-26 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/ %G ru %F VNGU_2016_16_3_a1
G. V. Demidenko. Quasielliptic operators and equations not solvable with respect to the highest order derivative. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 15-26. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/