Quasielliptic operators and equations not solvable with respect to the highest order derivative
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 15-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of quasielliptic operators in the whole space. Isomorphism properties in special weighted Sobolev spaces are established. We obtain conditions for unique solvability of the quasielliptic equations and estimates for their solutions in more general weighted spaces. Using the established results, we study solvability of the initial value problem for equations not solvable with respect to the highest order derivative.
Keywords: quasielliptic operators, weighted Sobolev spaces
Mots-clés : isomorphism, Sobolev type equations.
@article{VNGU_2016_16_3_a1,
     author = {G. V. Demidenko},
     title = {Quasielliptic operators and equations not solvable with respect to the highest order derivative},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {15--26},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/}
}
TY  - JOUR
AU  - G. V. Demidenko
TI  - Quasielliptic operators and equations not solvable with respect to the highest order derivative
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 15
EP  - 26
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/
LA  - ru
ID  - VNGU_2016_16_3_a1
ER  - 
%0 Journal Article
%A G. V. Demidenko
%T Quasielliptic operators and equations not solvable with respect to the highest order derivative
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 15-26
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/
%G ru
%F VNGU_2016_16_3_a1
G. V. Demidenko. Quasielliptic operators and equations not solvable with respect to the highest order derivative. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 15-26. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/

[1] S. L. Sobolev, Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach Science Publishers, Montreux, 1992

[2] Cantor M., “Spaces of Functions with Asymptotic Conditions on $R^n$”, Indiana Univ. Math. J., 24:9 (1975), 897–902 | DOI

[3] McOwen R. C., “The Behavior of the Laplacian on Weighted Sobolev Spaces”, Comm. Pure Appl. Math., 32:6 (1979), 783–795 | DOI

[4] L. A. Bagirov, V. A. Kondratiev, “Elliptic equations in $R^n$”, Differ. Equ., 11 (1975), 375–379

[5] Cantor M., “Some Problems of Global Analysis on Asymptotically Simple Manifolds”, Compositio Math., 38:1 (1979), 3–35

[6] McOwen R. C., “On Elliptic Operators in $R^n$”, Comm. Partial Diff. Eq., 5:9 (1980), 913–933 | DOI

[7] Lockhart R. B., “Fredholm Properties of a Class of Elliptic Operators On Non-Compact Manifolds”, Duke Math. J., 48:1 (1981), 289–312 | DOI

[8] Choquet-Bruhat Y., Christodoulou D., “Elliptic Systems in $H_{s,\sigma}$ Spaces on Manifolds which are Euclidean at Infinity”, Acta Math., 146:1/2 (1981), 129–150 | DOI

[9] Lockhart R. B., McOwen R. C., “Elliptic Differential Operators on Noncompact Manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12:3 (1985), 409–447

[10] G. V. Demidenko, “On quasielliptic operators in $R_n$”, Sib. Math. J., 39:5 (1998), 884–893 | DOI

[11] Hile G. N., “Fundamental Solutions and Mapping Properties of Semielliptic Operators”, Math. Nachrichten, 279:13–14 (2006), 1538–1572 | DOI

[12] G. V. Demidenko, “Quasielliptic operators and Sobolev type equations”, Sib. Math. J., 49:5 (2008), 842–851 | DOI

[13] G. V. Demidenko, “Quasielliptic operators and Sobolev type equations II”, Sib. Math. J., 50:5 (2009), 838–845 | DOI

[14] G. V. Demidenko, “Weighted Sobolev spaces and integral operators defined by quasielliptic equations”, Russian Acad. Sci. Dokl. Math., 49:1 (1994), 113–118 ; Мат. сборник, 70:1 (1966), 3–35

[15] L. D. Kudryavtsev, “Imbedding theorems for classes of functions defined on the entire space or on a half space. Part 1; 2”, Am. Math. Soc., Transl., II. Ser., 74 (1968), 199–225 ; Am. Math. Soc., Transl., II. Ser., 74 (1968), 227–260

[16] Nirenberg L., Walker H. F., “The Null Spaces of Elliptic Partial Differential Operators in $R^n$”, J. Math. Anal. Appl., 42:2 (1973), 271–301 | DOI

[17] Cantor M., “Elliptic Operators and Decomposition of Tensor Fields”, Bulletin AMS, 5:3 (1981), 235–262 ; (2006) | DOI

[18] S. L. Sobolev, Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas, v. I, Springer, New York, 2006

[19] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003

[20] S. V. Uspenskii, “The representation of functions defined by a certain class of hypoelliptic operators”, Proc. of the Steklov Institute of Math., 117 (1972), 343–352

[21] P. I. Lizorkin, “Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions”, Proc. of the Steklov Institute of Math., 105 (1969), 105–202

[22] G. H. Hardy, J. E. Littlewood, G. Pólia, Inequalities, Univ. Press, Cambridge, 1934