Mots-clés : isomorphism, Sobolev type equations.
@article{VNGU_2016_16_3_a1,
author = {G. V. Demidenko},
title = {Quasielliptic operators and equations not solvable with respect to the highest order derivative},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {15--26},
year = {2016},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/}
}
TY - JOUR AU - G. V. Demidenko TI - Quasielliptic operators and equations not solvable with respect to the highest order derivative JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 15 EP - 26 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/ LA - ru ID - VNGU_2016_16_3_a1 ER -
G. V. Demidenko. Quasielliptic operators and equations not solvable with respect to the highest order derivative. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 15-26. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a1/
[1] S. L. Sobolev, Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach Science Publishers, Montreux, 1992
[2] Cantor M., “Spaces of Functions with Asymptotic Conditions on $R^n$”, Indiana Univ. Math. J., 24:9 (1975), 897–902 | DOI
[3] McOwen R. C., “The Behavior of the Laplacian on Weighted Sobolev Spaces”, Comm. Pure Appl. Math., 32:6 (1979), 783–795 | DOI
[4] L. A. Bagirov, V. A. Kondratiev, “Elliptic equations in $R^n$”, Differ. Equ., 11 (1975), 375–379
[5] Cantor M., “Some Problems of Global Analysis on Asymptotically Simple Manifolds”, Compositio Math., 38:1 (1979), 3–35
[6] McOwen R. C., “On Elliptic Operators in $R^n$”, Comm. Partial Diff. Eq., 5:9 (1980), 913–933 | DOI
[7] Lockhart R. B., “Fredholm Properties of a Class of Elliptic Operators On Non-Compact Manifolds”, Duke Math. J., 48:1 (1981), 289–312 | DOI
[8] Choquet-Bruhat Y., Christodoulou D., “Elliptic Systems in $H_{s,\sigma}$ Spaces on Manifolds which are Euclidean at Infinity”, Acta Math., 146:1/2 (1981), 129–150 | DOI
[9] Lockhart R. B., McOwen R. C., “Elliptic Differential Operators on Noncompact Manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12:3 (1985), 409–447
[10] G. V. Demidenko, “On quasielliptic operators in $R_n$”, Sib. Math. J., 39:5 (1998), 884–893 | DOI
[11] Hile G. N., “Fundamental Solutions and Mapping Properties of Semielliptic Operators”, Math. Nachrichten, 279:13–14 (2006), 1538–1572 | DOI
[12] G. V. Demidenko, “Quasielliptic operators and Sobolev type equations”, Sib. Math. J., 49:5 (2008), 842–851 | DOI
[13] G. V. Demidenko, “Quasielliptic operators and Sobolev type equations II”, Sib. Math. J., 50:5 (2009), 838–845 | DOI
[14] G. V. Demidenko, “Weighted Sobolev spaces and integral operators defined by quasielliptic equations”, Russian Acad. Sci. Dokl. Math., 49:1 (1994), 113–118 ; Мат. сборник, 70:1 (1966), 3–35
[15] L. D. Kudryavtsev, “Imbedding theorems for classes of functions defined on the entire space or on a half space. Part 1; 2”, Am. Math. Soc., Transl., II. Ser., 74 (1968), 199–225 ; Am. Math. Soc., Transl., II. Ser., 74 (1968), 227–260
[16] Nirenberg L., Walker H. F., “The Null Spaces of Elliptic Partial Differential Operators in $R^n$”, J. Math. Anal. Appl., 42:2 (1973), 271–301 | DOI
[17] Cantor M., “Elliptic Operators and Decomposition of Tensor Fields”, Bulletin AMS, 5:3 (1981), 235–262 ; (2006) | DOI
[18] S. L. Sobolev, Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas, v. I, Springer, New York, 2006
[19] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003
[20] S. V. Uspenskii, “The representation of functions defined by a certain class of hypoelliptic operators”, Proc. of the Steklov Institute of Math., 117 (1972), 343–352
[21] P. I. Lizorkin, “Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions”, Proc. of the Steklov Institute of Math., 105 (1969), 105–202
[22] G. H. Hardy, J. E. Littlewood, G. Pólia, Inequalities, Univ. Press, Cambridge, 1934