Pseudo differential equations on manifolds with complicated singularities on a boundary
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One considers model pseudo differential equations in canjnical multi-dimensional domains. singularities can be a union of cones or a such singularity degenerates into a cone of a lower dimension. The concept of a wave factorization which was used by the author earlier permits to describe a solvability picture for these situations also.
Keywords: pseudo differential equation, wave factorization, complicated singularity, asymptotic expansion.
Mots-clés : elliptic symbol
@article{VNGU_2016_16_3_a0,
     author = {V. B. Vasilyev},
     title = {Pseudo differential equations on manifolds with complicated singularities on a boundary},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--14},
     year = {2016},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a0/}
}
TY  - JOUR
AU  - V. B. Vasilyev
TI  - Pseudo differential equations on manifolds with complicated singularities on a boundary
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 3
EP  - 14
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a0/
LA  - ru
ID  - VNGU_2016_16_3_a0
ER  - 
%0 Journal Article
%A V. B. Vasilyev
%T Pseudo differential equations on manifolds with complicated singularities on a boundary
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 3-14
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a0/
%G ru
%F VNGU_2016_16_3_a0
V. B. Vasilyev. Pseudo differential equations on manifolds with complicated singularities on a boundary. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/VNGU_2016_16_3_a0/

[1] Mikhlin S. G., Prößdorf S., Singular Integral Operators, Arademie-Verlag, Berlin, 1986

[2] Treves F., Introduction to Pseudodifferential and Fourier Integral Operators, v. 1, 2, Plenum Press, N.Y.–L., 1982

[3] Taylor M., Pseudodifferential Operators, Princeton Univ. Press, Princeton, 1981

[4] Hörmander L., Analysis of Partial Differential Operators, v. 1–4, Springer-Verlag, N.Y., 1983

[5] Eskin G., Elliptic Boundary Value Problems for Elliptic Pseudodifferential Equations, AMS, Providence, 1981

[6] Gakhov F. D., Boundary Value Problems, Dover Publications, N.Y., 1981

[7] Muskhelishvili N. I., Singular Integral Equations, North Holland, Amsterdam, 1976

[8] Gokhberg I., Krupnik N., Introduction to the Theory of One-Dimensional Singular Integral Equations, Birkhäuser, Basel, 2010

[9] V. A. Kakichev, “Boundary problems of a linear conjugation for functions holomorphic in bicylindric domains”, Theory of Functions, Functional Analysis and Applications, 5, 1967, 37–58 (in Russian)

[10] V. S. Vladimirov, “A problem of a linear conjugation for holomorphic functions”, Izv. Akad. Nauk SSSR Ser. Mat., 29:4 (1965), 807–834 (in Russian)

[11] V. S. Vladimirov, Methods of Function Theory of Many Complex Variables, Nauka, M., 1964 (in Russian)

[12] Vladimiriv V. S., Methods of the Theory of Generalized Functions, Taylor Francis, L., 2002

[13] V. A. Kondrat'ev, O. A. Oleinik, “Boundary value problems for partial differential equations in non-smooth domains”, Uspehi Matem. Nauk, 38:2(230) (1983), 3–76 (in Russian)

[14] Nazarov S. A., Plamenevsky B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin–N.Y., 1994

[15] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic Boundary Value Problems with Point Singularies, Mathematical Surveys and Monographs, 52, AMS, 1997

[16] Vasil'ev V. B., “Regularization of Multidimensional Singular Integral Equations in Non-smooth domains”, Trans. Moscow Math. Soc., 59 (1998), 65–93

[17] Vasil'ev V. B., Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in Non-smooth Domains, Kluwer Academic Publishers, Dordrecht–Boston–L., 2000

[18] Vasil'ev V. B., “Wave Factorization of Elliptic Symbols”, Math. Notes, 68:5–6 (2000), 556–568 | DOI

[19] Bochner S., Martin W. T., Several Complex Variables, Princeton Univ. Press, Princeton, 1948

[20] Vasil'ev V. B., “Elliptic Equations and Boundary Value Problems in Non-smooth Domains”, Pseudo Differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications, 213, Birkhäuser, Basel, 2011, 105–121

[21] Vasil'ev V. B., “Asymptotical Analysis of singularities for Pseudo Differential Equations in Canonical Non-smooth Domains”, Integral Methods in Science and Engineering. Computational and Analytic Aspects, Birkhäuser, Boston, 2011, 379–390

[22] Vasil'ev V. B., “Pseudo Differential Equations on Manifolds with Non-smooth Boundaries”, Differential and Difference Equations and Applications, Springer Proc. Math. Stat., 47, Springer, N.Y., 2013, 625–637 | DOI

[23] Vasil'ev V. B., “On the Dirichlet and Neumann Problems in Multi-dimensional Cone”, Mathematica Bohemica, 139:2 (2014), 333–340

[24] Vasil'ev V. B., “On Certain Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone”, Adv. Dyn. Syst. Appl., 9:2 (2014), 227–237

[25] Vasil'ev V. B., “New Constructions in the Theory of Elliptic Boundary Value Problems”, Integral Methods in Science and Engineering. Theoretical and Computational Advances, Birkhäuser, Basel, 2015, 629–641 | DOI

[26] Vasil'ev V. B., “Pseudo Differential Equations in Cones with Conjugation Points on the Boundary”, Differential Equations, 51:9 (2015), 1113–1125 | DOI