Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 93-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a class of operator pairs for linear homogeneous fractional differential equations in Banach spaces. Reflexive Banach space was decomposed into direct sum of the phase space of the equation and of the kernel of the operator under the fractional derivative. Analytic in a sector of the complex plane containing the positive semiaxis family of resolving operators is constructed. It degenerates only on the kernel of the operator at the derivative. Work results generalize the analogous assertions on weakly degenerate analytic resolving semigroups for the case of degenerate equations of arbitrary fractional order. They are applied to the research of initial boundary value problems for a class of partial differential equations with fractional time derivative that contain polynomials of Laplace operator with respect to spatial variables.
Keywords: fractional differential equation, degenerate evolution equation, phase space, analytic family of resolving operators, initial boundary value problem.
@article{VNGU_2016_16_2_a8,
     author = {V. E. Fedorov and E. A. Romanova and A. Debbouche},
     title = {Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {93--107},
     year = {2016},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - E. A. Romanova
AU  - A. Debbouche
TI  - Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 93
EP  - 107
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/
LA  - ru
ID  - VNGU_2016_16_2_a8
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A E. A. Romanova
%A A. Debbouche
%T Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 93-107
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/
%G ru
%F VNGU_2016_16_2_a8
V. E. Fedorov; E. A. Romanova; A. Debbouche. Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 93-107. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/

[1] A. N. Gerasimov, “Generalization of linear deformation laws and its applications to problems of internal friction”, Applied Mathematics and Mechanics, 12 (1948), 529–539 (in Russian)

[2] Caputo M., “Lineal Model of Dissipation Whose $Q$ is Almost Frequancy Independent. II”, Geophys. J. Astronom. Soc., 13 (1967), 529–539 | DOI

[3] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology. University Press Facilities, 2001 | MR | Zbl

[4] Prüss J., Evolutionary Integral Equations and Applications, Springer, Basel, 1993 | MR

[5] G. A. Sviridyuk, V. E. Fedorov, “On the identities of analytic semigroups of operators with kernels”, Sib. Mat. J., 39:3 (1998), 522–533 | DOI | MR | Zbl

[6] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl

[7] V. E. Fedorov, “Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces”, Sbornik Mathematics, 195:8 (2004), 1205–1234 | DOI | DOI | MR | Zbl

[8] V. E. Fedorov, A. Debbouche, “A class of degenerate fractional evolution systems in Banach spaces”, Differ. Equ., 49:12 (2013), 1569–1576 | DOI | MR | Zbl

[9] V. E. Fedorov, D. M. Gordievskikh, “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Rus. Mathematics (Iz. VUZ), 59:1 (2015), 60–70 | MR | Zbl

[10] V. E. Fedorov, D. M. Gordievskikh, M. V. Plekhanova, “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR | Zbl

[11] Kostić M., “Abstract Time-Fractional Equations: Existence and Growth of Solutions”, Fract. Calculus Appl. Anal., 14 (2014), 301–316 | MR

[12] Podlubny I., Fractional Differential Equations, Academic Press, San Diego–Boston, 1999 | MR | Zbl

[13] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and System Sciences International, 43:5 (2004), 698–702 | MR