@article{VNGU_2016_16_2_a8,
author = {V. E. Fedorov and E. A. Romanova and A. Debbouche},
title = {Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {93--107},
year = {2016},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/}
}
TY - JOUR AU - V. E. Fedorov AU - E. A. Romanova AU - A. Debbouche TI - Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 93 EP - 107 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/ LA - ru ID - VNGU_2016_16_2_a8 ER -
%0 Journal Article %A V. E. Fedorov %A E. A. Romanova %A A. Debbouche %T Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 93-107 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/ %G ru %F VNGU_2016_16_2_a8
V. E. Fedorov; E. A. Romanova; A. Debbouche. Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 93-107. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a8/
[1] A. N. Gerasimov, “Generalization of linear deformation laws and its applications to problems of internal friction”, Applied Mathematics and Mechanics, 12 (1948), 529–539 (in Russian)
[2] Caputo M., “Lineal Model of Dissipation Whose $Q$ is Almost Frequancy Independent. II”, Geophys. J. Astronom. Soc., 13 (1967), 529–539 | DOI
[3] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology. University Press Facilities, 2001 | MR | Zbl
[4] Prüss J., Evolutionary Integral Equations and Applications, Springer, Basel, 1993 | MR
[5] G. A. Sviridyuk, V. E. Fedorov, “On the identities of analytic semigroups of operators with kernels”, Sib. Mat. J., 39:3 (1998), 522–533 | DOI | MR | Zbl
[6] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl
[7] V. E. Fedorov, “Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces”, Sbornik Mathematics, 195:8 (2004), 1205–1234 | DOI | DOI | MR | Zbl
[8] V. E. Fedorov, A. Debbouche, “A class of degenerate fractional evolution systems in Banach spaces”, Differ. Equ., 49:12 (2013), 1569–1576 | DOI | MR | Zbl
[9] V. E. Fedorov, D. M. Gordievskikh, “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Rus. Mathematics (Iz. VUZ), 59:1 (2015), 60–70 | MR | Zbl
[10] V. E. Fedorov, D. M. Gordievskikh, M. V. Plekhanova, “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR | Zbl
[11] Kostić M., “Abstract Time-Fractional Equations: Existence and Growth of Solutions”, Fract. Calculus Appl. Anal., 14 (2014), 301–316 | MR
[12] Podlubny I., Fractional Differential Equations, Academic Press, San Diego–Boston, 1999 | MR | Zbl
[13] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and System Sciences International, 43:5 (2004), 698–702 | MR