Classical solvability of the radial viscous fingering problem in a Hele–Sha cell with surface tension
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 79-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss one-phase radial viscous fingering problem in a Hele–Sha cell with surface tension, which is a nonlinear problem with a free boundary for elliptic equations. Unlike the Stefan problem for heat equation Hele–Sha problem is of hydrodynamic type. In this paper the classical solvability of one-phase Hele–Sha problem with radial geometry is established by applying the same method as for the Stefan problem and justifying the vanishing the coefficient of the time-derivative in a parabolic equation.
Keywords: radial viscous fingering, Hele–Sha problem, classical solution.
Mots-clés : surface tension
@article{VNGU_2016_16_2_a7,
     author = {Hisasi Tani},
     title = {Classical solvability of the radial viscous fingering problem in a {Hele{\textendash}Sha} cell with surface tension},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {79--92},
     year = {2016},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/}
}
TY  - JOUR
AU  - Hisasi Tani
TI  - Classical solvability of the radial viscous fingering problem in a Hele–Sha cell with surface tension
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 79
EP  - 92
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/
LA  - ru
ID  - VNGU_2016_16_2_a7
ER  - 
%0 Journal Article
%A Hisasi Tani
%T Classical solvability of the radial viscous fingering problem in a Hele–Sha cell with surface tension
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 79-92
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/
%G ru
%F VNGU_2016_16_2_a7
Hisasi Tani. Classical solvability of the radial viscous fingering problem in a Hele–Sha cell with surface tension. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 79-92. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/

[1] Hele-Shaw H. S., “The Flow of Water”, Nature, 58 (1898), 33–36

[2] Saffman P. G., Taylor G. I., “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid”, Proc. Royal Soc. London. Ser. A, 245 (1958), 312–329 | DOI | MR | Zbl

[3] Bensimon D., Kadanoff L. P., Liang S., Shraiman B. I., Tang C., “Viscous Flow in two Dimensions”, Rev. Mod. Phys., 58 (1986), 977–999 | DOI | MR

[4] Kessler D. A., Koplik J., Levine H., “Pattern Selection in Fingering Growth Phenomena”, Adv. Phys., 37 (1988), 255–339 | DOI

[5] Paterson L., “Radial Fingering in a Hele-Shaw Cell”, J. Fluid Mech., 113 (1981), 513–529 | DOI

[6] B. V. Bazalii, “On estimates of the solution of one model of the conjugation problem in the theory of problems with a free boundary”, Differ. Uravn., 33 (1997), 1374–1381 (in Russian) | MR | Zbl

[7] B. V. Bazalii, “About one proof of classical solvability of Hele-Show problem with a free boundary”, Ukr. Mat. Zhur., 50 (1998), 1452–1462 (in Russian) | MR | Zbl

[8] Escher J., Simonett G., “Classical Solutions of Multidimensional Hele-Shaw Model”, SIAM J. Math. Anal., 28 (1997), 1028–1047 | DOI | MR | Zbl

[9] Escher J., Simonett G., “Classical Solutions for Hele-Shaw Models with Surface Tension”, Adv. Differ. Equ., 2 (1997), 619–642 | MR | Zbl

[10] Prokert G., “Existence Results for Hele-Shaw Flow Driven by Surface Tension”, European J. Appl. Math., 9 (1998), 195–221 | DOI | MR | Zbl

[11] G. I. Bizhanova, V. A. Solonnikov, “On some model problems for second order parabolic equations with a time derivative in the boundary conditions”, Algebra i Analiz, 6 (1994), 30–50 (in Russian)

[12] Solonnikov V. A., “On the Justification of the Quasistationary Approximation in the Problem of Motion of a Viscous Capillary Drop”, Interfaces Free Bound., 1 (1999), 125–173 | DOI | MR | Zbl

[13] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasi-Linear Equations of the Parabolic Type, Nauka, M., 1967 (in Russian) | MR

[14] Tani A., “On the Free Boundary Value Problem for Compressible Viscous Fluid Motion”, J. Math. Kyoto Univ., 21 (1981), 839–859 | MR | Zbl