Mots-clés : surface tension
@article{VNGU_2016_16_2_a7,
author = {Hisasi Tani},
title = {Classical solvability of the radial viscous fingering problem in a {Hele{\textendash}Sha} cell with surface tension},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {79--92},
year = {2016},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/}
}
TY - JOUR AU - Hisasi Tani TI - Classical solvability of the radial viscous fingering problem in a Hele–Sha cell with surface tension JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 79 EP - 92 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/ LA - ru ID - VNGU_2016_16_2_a7 ER -
Hisasi Tani. Classical solvability of the radial viscous fingering problem in a Hele–Sha cell with surface tension. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 79-92. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a7/
[1] Hele-Shaw H. S., “The Flow of Water”, Nature, 58 (1898), 33–36
[2] Saffman P. G., Taylor G. I., “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid”, Proc. Royal Soc. London. Ser. A, 245 (1958), 312–329 | DOI | MR | Zbl
[3] Bensimon D., Kadanoff L. P., Liang S., Shraiman B. I., Tang C., “Viscous Flow in two Dimensions”, Rev. Mod. Phys., 58 (1986), 977–999 | DOI | MR
[4] Kessler D. A., Koplik J., Levine H., “Pattern Selection in Fingering Growth Phenomena”, Adv. Phys., 37 (1988), 255–339 | DOI
[5] Paterson L., “Radial Fingering in a Hele-Shaw Cell”, J. Fluid Mech., 113 (1981), 513–529 | DOI
[6] B. V. Bazalii, “On estimates of the solution of one model of the conjugation problem in the theory of problems with a free boundary”, Differ. Uravn., 33 (1997), 1374–1381 (in Russian) | MR | Zbl
[7] B. V. Bazalii, “About one proof of classical solvability of Hele-Show problem with a free boundary”, Ukr. Mat. Zhur., 50 (1998), 1452–1462 (in Russian) | MR | Zbl
[8] Escher J., Simonett G., “Classical Solutions of Multidimensional Hele-Shaw Model”, SIAM J. Math. Anal., 28 (1997), 1028–1047 | DOI | MR | Zbl
[9] Escher J., Simonett G., “Classical Solutions for Hele-Shaw Models with Surface Tension”, Adv. Differ. Equ., 2 (1997), 619–642 | MR | Zbl
[10] Prokert G., “Existence Results for Hele-Shaw Flow Driven by Surface Tension”, European J. Appl. Math., 9 (1998), 195–221 | DOI | MR | Zbl
[11] G. I. Bizhanova, V. A. Solonnikov, “On some model problems for second order parabolic equations with a time derivative in the boundary conditions”, Algebra i Analiz, 6 (1994), 30–50 (in Russian)
[12] Solonnikov V. A., “On the Justification of the Quasistationary Approximation in the Problem of Motion of a Viscous Capillary Drop”, Interfaces Free Bound., 1 (1999), 125–173 | DOI | MR | Zbl
[13] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasi-Linear Equations of the Parabolic Type, Nauka, M., 1967 (in Russian) | MR
[14] Tani A., “On the Free Boundary Value Problem for Compressible Viscous Fluid Motion”, J. Math. Kyoto Univ., 21 (1981), 839–859 | MR | Zbl