On the solvability of the boundary value problem of magnetic gas dynamics with cylindrical and spherical symmetry
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 41-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we prove the correctness “as a whole” by the time of the initial-boundary value problems for the equations of motion of a viscous heat-conducting gas in view of the magnetic field. Showing the transition from the primary to the three-dimensional Euler equations and the subsequent Lagrangian coordinate variable. Proof of the main results was carried out at the same time to move to the cylindrical and spherical waves.
Keywords: the equations of the motion of the magnetic gas dynamics, boundary value problem, solvability, cylindrical symmetry, spherical symmetry, magnetic field.
@article{VNGU_2016_16_2_a4,
     author = {B. D. Koshanov and G. D. Smatova and T. B. Uteev},
     title = {On the solvability of the boundary value problem of magnetic gas dynamics with cylindrical and spherical symmetry},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {41--49},
     year = {2016},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a4/}
}
TY  - JOUR
AU  - B. D. Koshanov
AU  - G. D. Smatova
AU  - T. B. Uteev
TI  - On the solvability of the boundary value problem of magnetic gas dynamics with cylindrical and spherical symmetry
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 41
EP  - 49
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a4/
LA  - ru
ID  - VNGU_2016_16_2_a4
ER  - 
%0 Journal Article
%A B. D. Koshanov
%A G. D. Smatova
%A T. B. Uteev
%T On the solvability of the boundary value problem of magnetic gas dynamics with cylindrical and spherical symmetry
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 41-49
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a4/
%G ru
%F VNGU_2016_16_2_a4
B. D. Koshanov; G. D. Smatova; T. B. Uteev. On the solvability of the boundary value problem of magnetic gas dynamics with cylindrical and spherical symmetry. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 41-49. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a4/

[1] V. B. Nikolaev, “Global solvability of the equations of motion of a viscous gas with axial and spherical symmetry”, Din. Splosh. Sredy, 63, 1983, 136–141 (in Russian) | Zbl

[2] A. V. Kazhikhov, Sh. S. Smagulov, “Correctness and approximation of models of magnetic gas dynamics”, Izv. AN Kaz SSR, 1986, no. 6, 17–19 (in Russian)

[3] A. A. Durmagambetov, B. D. Koshanov, “Correct solvability of mixed boundary value problems for the one-dimensional equations of magnetic gas dynamics with degenerate density”, Izv. AN Kaz SSR, 1990, no. 1, 22–25 (in Russian) | MR

[4] Bay Shi-i, Magnetic Gas Dynamics and Plasma Dynamics, Mir, M., 1964 (in Russian)

[5] N. E. Kochin, I. A. Kibel', N. V. Roze, Theoretical Hydromechanics, v. 2, FizMatGiz, M., 1963 (in Russian)

[6] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary Value Problems in the Mechanics of Inhomogeneous Fluids, Nauka, Novosibirsk, 1983 (in Russian)

[7] M. O. Otelbaev, B. D. Koshanov, On the solvability of the problem of magnetic gas dynamics with cylindrical or spherical symmetry, Dep. v KazNIINTI. 17.07.89. No 2534, Alma-Ata, 1989 (in Russian)

[8] B. D. Koshanov, “Global solvability of the boundary value problem with a cylindrical or spherical symmetry”, Proc. of VII Vses. shkoly po kachestvennoy teorii differentsial'nykh uravneniy gidrodinamiki (Barnaul, 1989) (in Russian)

[9] B. D. Koshanov, “Global solvability of the equations of motion of MGD with cylindrical and spherical symmetry”, Differentsial'nye uravneniya i matematicheskoe modelirovanie, Proc. of Mezh. Nauch. Konf. (Ulan-Ude, 2015), 162–163 (in Russian)