Keywords: nonpower nonlinearity, Sobolev–Orlicz space, unbounded domains.
@article{VNGU_2016_16_2_a3,
author = {L. M. Kozhevnikova and A. A. Nikitina},
title = {Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {26--40},
year = {2016},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/}
}
TY - JOUR
AU - L. M. Kozhevnikova
AU - A. A. Nikitina
TI - Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
JO - Sibirskij žurnal čistoj i prikladnoj matematiki
PY - 2016
SP - 26
EP - 40
VL - 16
IS - 2
UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
LA - ru
ID - VNGU_2016_16_2_a3
ER -
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Nikitina
%T Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 26-40
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
%G ru
%F VNGU_2016_16_2_a3
L. M. Kozhevnikova; A. A. Nikitina. Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 26-40. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
[1] Donaldson T., “Nonlinear Elliptic Boundari Value Problems in Orlicz–Sobolev Spaces”, J. Diff. Eq., 10:3 (1971), 507–528 | DOI | MR
[2] V. S. Klimov, “Imbedding theorems for Orlicz spaces and their applications to boundary value problems”, Sib. Math. J., 13 (1972), 231–240 | DOI | MR | Zbl | Zbl
[3] Fougeres A., “Operateurs Elliptiques du Calcul des Variations a Coefficients Tres Fortement non Lineaires”, C. R. Acad. Sei. Paris Ser. A-B, 274 (1972), 763–766 | MR | Zbl
[4] Gossez J.-P., “Nonlinear Elliptic Boundary Value Problems for Equations with Rapidly (or Slowly) Increasing Coefficients”, Trans. Amer. Math. Soc., 190 (1974), 163–206 | DOI | MR
[5] Gwiazda P., Wittbold P., Wróblewska A., Zimmermann A., Renormalized Solutions of Nonlinear Elliptic Problems in Generalized Orlicz Spaces, Ph.D. Programme: Mathematical Methods in Natural Sciences (MMNS). Preprint No 2011-013, 2011
[6] L. M. Kozhevnikova, R. H. Karimov, “Behavior on infinity of decision quasilinear elliptical equations in unbounded domain”, Ufimsk. Mat. Zh., 2:2 (2010), 53–66 (in Russian) | MR
[7] L. M. Kozhevnikova, A. A. Khadzhi, “The solutions of anisotropic elliptic equations in undounded domains”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 90–96 (in Russian) | DOI
[8] A. L. Gladkov, “The Dirichlet problem for quasilinear degenerating elliptic equations in unbounded domains”, Differ. Equ., 29:2 (1993), 217–223 | MR | Zbl
[9] Brezis H., “Semilinear Equations in $R_N$ without Condition at Infnity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR | Zbl
[10] Brezis H., “Elliptic and Parabolic Semilinear Problems without Conditions at Infnity”, Arch. Rational Mech. Anal., 106:3 (1989), 217–241 | DOI | MR
[11] Diaz J. I., Oleinik O. A., “Nonlinear Elliptic Boundary-Value Problems in Unbounded Domains and the Asymptotic Behaviour of its Solution”, C.R. Acad. Sci. Paris Ser. I Math., 315:1 (1992), 787–792 | MR | Zbl
[12] Bokalo M., Domanska O., “On Well-Posedness of Boundary Problems for Elliptic Equations in General Anisotropic Lebesgue–Sobolev Spaces”, Mathematychni Studii, 28:1 (2007), 77–91 | MR | Zbl
[13] L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in undounded domains”, Sbornik: Mathematics, 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl
[14] M. A. Krasnosel'skiy, Ya. B. Rutitskiy, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961 | MR | MR
[15] A. G. Korolev, “Embedding theorems for anisotropic Sobolev–Orlicz spaces”, Math. Notes, 38:1 (1983), 37–42 | MR | MR | Zbl | Zbl