Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 26-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some class of anisotropic elliptic equations with non-power nonlinearities in space $\mathbb{R}_n$ is considered $$ -\sum\limits_{\alpha=1}^{n}(a_{\alpha}(\mathrm{x},u_{x_{\alpha}}))_{x_{\alpha}}+a_0(\mathrm{x},u)=F_0( \mathrm{x}).$$ The theorem of existence of solutions in local Sobolev–Orlicz spaces without restrictions on data growth on infinity is proved. Conditions on structure of an equation, sufficient for uniqueness of solutions, without restrictions on its growth on infinity are found. The power estimate characterizing the behavior of the solution at infinity is installed. The continuous dependence of solution on right side of solution is proved.
Mots-clés : anisotropic elliptic equations
Keywords: nonpower nonlinearity, Sobolev–Orlicz space, unbounded domains.
@article{VNGU_2016_16_2_a3,
     author = {L. M. Kozhevnikova and A. A. Nikitina},
     title = {Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {26--40},
     year = {2016},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Nikitina
TI  - Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 26
EP  - 40
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
LA  - ru
ID  - VNGU_2016_16_2_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Nikitina
%T Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 26-40
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
%G ru
%F VNGU_2016_16_2_a3
L. M. Kozhevnikova; A. A. Nikitina. Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 26-40. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/

[1] Donaldson T., “Nonlinear Elliptic Boundari Value Problems in Orlicz–Sobolev Spaces”, J. Diff. Eq., 10:3 (1971), 507–528 | DOI | MR

[2] V. S. Klimov, “Imbedding theorems for Orlicz spaces and their applications to boundary value problems”, Sib. Math. J., 13 (1972), 231–240 | DOI | MR | Zbl | Zbl

[3] Fougeres A., “Operateurs Elliptiques du Calcul des Variations a Coefficients Tres Fortement non Lineaires”, C. R. Acad. Sei. Paris Ser. A-B, 274 (1972), 763–766 | MR | Zbl

[4] Gossez J.-P., “Nonlinear Elliptic Boundary Value Problems for Equations with Rapidly (or Slowly) Increasing Coefficients”, Trans. Amer. Math. Soc., 190 (1974), 163–206 | DOI | MR

[5] Gwiazda P., Wittbold P., Wróblewska A., Zimmermann A., Renormalized Solutions of Nonlinear Elliptic Problems in Generalized Orlicz Spaces, Ph.D. Programme: Mathematical Methods in Natural Sciences (MMNS). Preprint No 2011-013, 2011

[6] L. M. Kozhevnikova, R. H. Karimov, “Behavior on infinity of decision quasilinear elliptical equations in unbounded domain”, Ufimsk. Mat. Zh., 2:2 (2010), 53–66 (in Russian) | MR

[7] L. M. Kozhevnikova, A. A. Khadzhi, “The solutions of anisotropic elliptic equations in undounded domains”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 90–96 (in Russian) | DOI

[8] A. L. Gladkov, “The Dirichlet problem for quasilinear degenerating elliptic equations in unbounded domains”, Differ. Equ., 29:2 (1993), 217–223 | MR | Zbl

[9] Brezis H., “Semilinear Equations in $R_N$ without Condition at Infnity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR | Zbl

[10] Brezis H., “Elliptic and Parabolic Semilinear Problems without Conditions at Infnity”, Arch. Rational Mech. Anal., 106:3 (1989), 217–241 | DOI | MR

[11] Diaz J. I., Oleinik O. A., “Nonlinear Elliptic Boundary-Value Problems in Unbounded Domains and the Asymptotic Behaviour of its Solution”, C.R. Acad. Sci. Paris Ser. I Math., 315:1 (1992), 787–792 | MR | Zbl

[12] Bokalo M., Domanska O., “On Well-Posedness of Boundary Problems for Elliptic Equations in General Anisotropic Lebesgue–Sobolev Spaces”, Mathematychni Studii, 28:1 (2007), 77–91 | MR | Zbl

[13] L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in undounded domains”, Sbornik: Mathematics, 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl

[14] M. A. Krasnosel'skiy, Ya. B. Rutitskiy, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961 | MR | MR

[15] A. G. Korolev, “Embedding theorems for anisotropic Sobolev–Orlicz spaces”, Math. Notes, 38:1 (1983), 37–42 | MR | MR | Zbl | Zbl