Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 26-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Some class of  anisotropic elliptic equations with non-power nonlinearities in space $\mathbb{R}_n$ is considered
$$ -\sum\limits_{\alpha=1}^{n}(a_{\alpha}(\mathrm{x},u_{x_{\alpha}}))_{x_{\alpha}}+a_0(\mathrm{x},u)=F_0( \mathrm{x}).$$ The theorem of existence of solutions in local Sobolev–Orlicz spaces without restrictions on data  growth  on infinity is proved. Conditions on structure of an equation, sufficient for uniqueness of  solutions, without restrictions on its growth on infinity are found. The power estimate characterizing the behavior of the solution at infinity is installed. The continuous dependence of solution on right side of solution is proved.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
anisotropic elliptic equations
Keywords: nonpower nonlinearity, Sobolev–Orlicz space, unbounded domains.
                    
                  
                
                
                Keywords: nonpower nonlinearity, Sobolev–Orlicz space, unbounded domains.
@article{VNGU_2016_16_2_a3,
     author = {L. M. Kozhevnikova and A. A. Nikitina},
     title = {Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {26--40},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/}
}
                      
                      
                    TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Nikitina
TI  - Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 26
EP  - 40
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
LA  - ru
ID  - VNGU_2016_16_2_a3
ER  - 
                      
                      
                    %0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Nikitina
%T Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 26-40
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
%G ru
%F VNGU_2016_16_2_a3
                      
                      
                    L. M. Kozhevnikova; A. A. Nikitina. Qualitative properties of solutions of elliptic equations with non-power nonlinearities in $\mathbb{R}_n$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 26-40. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a3/
                  
                