A modified Galerkin method for semilinear parabolic equation with changing time direction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 6-15
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, to prove the unique solvability of the first boundary value problem for semilinear parabolic equation of second order with changing time direction a modified Galerkin method is applied and also regularization method is used. For the approximate solutions of the problem error estimate of the modified Galerkin method is set using the regularization parameter and eigenvalue of the spectral Dirichlet problem for the Laplace equation in the space variables.
Keywords:
semilinear parabolic equation, boundary value problem, a priori estimate, inequality, error estimate.
@article{VNGU_2016_16_2_a1,
author = {I. E. Egorov and E. S. Efimova},
title = {A modified {Galerkin} method for semilinear parabolic equation with changing time direction},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {6--15},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/}
}
TY - JOUR AU - I. E. Egorov AU - E. S. Efimova TI - A modified Galerkin method for semilinear parabolic equation with changing time direction JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 6 EP - 15 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/ LA - ru ID - VNGU_2016_16_2_a1 ER -
%0 Journal Article %A I. E. Egorov %A E. S. Efimova %T A modified Galerkin method for semilinear parabolic equation with changing time direction %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 6-15 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/ %G ru %F VNGU_2016_16_2_a1
I. E. Egorov; E. S. Efimova. A modified Galerkin method for semilinear parabolic equation with changing time direction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 6-15. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/