A modified Galerkin method for semilinear parabolic equation with changing time direction
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 6-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, to prove the unique solvability of the first boundary value problem for semilinear parabolic equation of second order with changing time direction a modified Galerkin method is applied and also regularization method is used. For the approximate solutions of the problem error estimate of the modified Galerkin method is set using the regularization parameter and eigenvalue of the spectral Dirichlet problem for the Laplace equation in the space variables.
Keywords: semilinear parabolic equation, boundary value problem, a priori estimate, inequality, error estimate.
@article{VNGU_2016_16_2_a1,
     author = {I. E. Egorov and E. S. Efimova},
     title = {A modified {Galerkin} method for semilinear parabolic equation with changing time direction},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {6--15},
     year = {2016},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/}
}
TY  - JOUR
AU  - I. E. Egorov
AU  - E. S. Efimova
TI  - A modified Galerkin method for semilinear parabolic equation with changing time direction
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 6
EP  - 15
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/
LA  - ru
ID  - VNGU_2016_16_2_a1
ER  - 
%0 Journal Article
%A I. E. Egorov
%A E. S. Efimova
%T A modified Galerkin method for semilinear parabolic equation with changing time direction
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 6-15
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/
%G ru
%F VNGU_2016_16_2_a1
I. E. Egorov; E. S. Efimova. A modified Galerkin method for semilinear parabolic equation with changing time direction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 6-15. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/

[1] G. Fikera, “Towards a unified theory of boundary value problems for elliptic-parabolic equations”, Matematika, 7:6 (1963), 99–121 (in Russian)

[2] I. E. Egorov, “A boundary value problem for a high-order equation with changing time direction”, Dokl. AN SSSR, 303:6 (1988), 1301–1304 (in Russian)

[3] I. E. Egorov, P. I. Stepanova, “About Galerkin method for elliptic-parabolic equations”, Mat. Zametki YaGU, 15:2 (2008), 19–26 (in Russian)

[4] I. E. Egorov, “Application of the Galerkin method for the third boundary value problem for elliptic-parabolic equation”, Mat. Zametki YaGU, 16:1 (2009), 22–27 (in Russian) | MR | Zbl

[5] I. E. Egorov, E. S. Efimova, “Stationary Galerkin method for parabolic equations with a varying direction of time”, Mat. Zametki YaGU, 18:2 (2011), 41–46 (in Russian) | Zbl

[6] I. E. Egorov, E. S. Efimova, “Error estimates for the stationary Galerkin method for a degenerate parabolic equation”, Mat. Zametki YaGU, 19:1 (2012), 27–33 (in Russian) | Zbl

[7] S. A. Tersenov, Parabolic Equations with a Varying Direction of Time, Nauka, Novosibirsk, 1985 (in Russian) | MR

[8] A. M. Nakhushev, The Problems with a Shift for the Main Types of Partial Differential Equations, Nauka, Novosibirsk, 2006 (in Russian)

[9] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Nonclassical Operator-Differential Equations, Nauka, Novosibirsk, 2000 (in Russian) | MR

[10] O. A. Oleynik, E. V. Radkevich, Second-Order Equations with Nonnegative Characteristic Form, Izd-vo MGU, M., 2010 (in Russian)

[11] S. G. Pyatkov, “On the solvability of a boundary value problem for a parabolic equation with changing time direction”, Dokl. AN SSSR, 285:6 (1985), 1322–1327 (in Russian) | MR

[12] Potapova S. V., “Boundary Value Problems for Pseudohyperbolic Equations with a Variable Time Direction”, TWMS J. of Pure and Appl. Math., 3:1 (2012), 75–91 | MR | Zbl

[13] E. S. Efimova, I. E. Egorov, M. S. Kolesova, “Error estimation for stationary Galerkin method for semilinear parabolic equation with changing direction of time”, J. Math. Sci., 213:6 (2016), 838–843 | DOI | MR | Zbl

[14] Vinogradova P., “Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations”, Numerical Functional Analysis and Optimization, 31:3 (2010), 339–365 | DOI | MR | Zbl

[15] Dubinskiy Yu. A., “Quasilinear elliptic and parabolic equations of any order”, Rus. Math. Surv., 23:1(139) (1968), 45–90 (in Russian) | MR

[16] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy, Integral representations of functions and Embedding Theorems, Nauka, M., 1975 (in Russian) | MR