@article{VNGU_2016_16_2_a1,
author = {I. E. Egorov and E. S. Efimova},
title = {A modified {Galerkin} method for semilinear parabolic equation with changing time direction},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {6--15},
year = {2016},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/}
}
TY - JOUR AU - I. E. Egorov AU - E. S. Efimova TI - A modified Galerkin method for semilinear parabolic equation with changing time direction JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 6 EP - 15 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/ LA - ru ID - VNGU_2016_16_2_a1 ER -
%0 Journal Article %A I. E. Egorov %A E. S. Efimova %T A modified Galerkin method for semilinear parabolic equation with changing time direction %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 6-15 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/ %G ru %F VNGU_2016_16_2_a1
I. E. Egorov; E. S. Efimova. A modified Galerkin method for semilinear parabolic equation with changing time direction. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 2, pp. 6-15. http://geodesic.mathdoc.fr/item/VNGU_2016_16_2_a1/
[1] G. Fikera, “Towards a unified theory of boundary value problems for elliptic-parabolic equations”, Matematika, 7:6 (1963), 99–121 (in Russian)
[2] I. E. Egorov, “A boundary value problem for a high-order equation with changing time direction”, Dokl. AN SSSR, 303:6 (1988), 1301–1304 (in Russian)
[3] I. E. Egorov, P. I. Stepanova, “About Galerkin method for elliptic-parabolic equations”, Mat. Zametki YaGU, 15:2 (2008), 19–26 (in Russian)
[4] I. E. Egorov, “Application of the Galerkin method for the third boundary value problem for elliptic-parabolic equation”, Mat. Zametki YaGU, 16:1 (2009), 22–27 (in Russian) | MR | Zbl
[5] I. E. Egorov, E. S. Efimova, “Stationary Galerkin method for parabolic equations with a varying direction of time”, Mat. Zametki YaGU, 18:2 (2011), 41–46 (in Russian) | Zbl
[6] I. E. Egorov, E. S. Efimova, “Error estimates for the stationary Galerkin method for a degenerate parabolic equation”, Mat. Zametki YaGU, 19:1 (2012), 27–33 (in Russian) | Zbl
[7] S. A. Tersenov, Parabolic Equations with a Varying Direction of Time, Nauka, Novosibirsk, 1985 (in Russian) | MR
[8] A. M. Nakhushev, The Problems with a Shift for the Main Types of Partial Differential Equations, Nauka, Novosibirsk, 2006 (in Russian)
[9] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Nonclassical Operator-Differential Equations, Nauka, Novosibirsk, 2000 (in Russian) | MR
[10] O. A. Oleynik, E. V. Radkevich, Second-Order Equations with Nonnegative Characteristic Form, Izd-vo MGU, M., 2010 (in Russian)
[11] S. G. Pyatkov, “On the solvability of a boundary value problem for a parabolic equation with changing time direction”, Dokl. AN SSSR, 285:6 (1985), 1322–1327 (in Russian) | MR
[12] Potapova S. V., “Boundary Value Problems for Pseudohyperbolic Equations with a Variable Time Direction”, TWMS J. of Pure and Appl. Math., 3:1 (2012), 75–91 | MR | Zbl
[13] E. S. Efimova, I. E. Egorov, M. S. Kolesova, “Error estimation for stationary Galerkin method for semilinear parabolic equation with changing direction of time”, J. Math. Sci., 213:6 (2016), 838–843 | DOI | MR | Zbl
[14] Vinogradova P., “Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations”, Numerical Functional Analysis and Optimization, 31:3 (2010), 339–365 | DOI | MR | Zbl
[15] Dubinskiy Yu. A., “Quasilinear elliptic and parabolic equations of any order”, Rus. Math. Surv., 23:1(139) (1968), 45–90 (in Russian) | MR
[16] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy, Integral representations of functions and Embedding Theorems, Nauka, M., 1975 (in Russian) | MR