@article{VNGU_2016_16_1_a7,
author = {Ar. S. Tersenov},
title = {On the influence of gradient terms on the existence of solutions to {Dirichlet} problem for the $p${-Laplace} equation},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {130--142},
year = {2016},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/}
}
TY - JOUR AU - Ar. S. Tersenov TI - On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 130 EP - 142 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/ LA - ru ID - VNGU_2016_16_1_a7 ER -
%0 Journal Article %A Ar. S. Tersenov %T On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 130-142 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/ %G ru %F VNGU_2016_16_1_a7
Ar. S. Tersenov. On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 130-142. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/
[1] Dall'Aglio A., Giachetti D., Segura de Leon S., “Global Existence for Parabolic Problems Involving the $p$-Laplacian and a Critical Gradient Term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR | Zbl
[2] de Figueiredo D., Lions P. L., Nussbaum R. D., “A Priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations”, J. Math. Pures Appl., 61 (1982), 41–63 | MR | Zbl
[3] Figueiredo D. G., Sanchez J., Ubilla P., “Quasilinear Equations with Dependence on the Gradient”, Nonlinear Anal., 71 (2009), 4862–4868 | DOI | MR | Zbl
[4] Figueiredo D. G., Yang J. F., “A Priori Bounds for Positive Solutions of a Non-Variational Elliptic System”, Comm. Partial Differential Equations, 26 (2001), 2305–2321 | DOI | MR | Zbl
[5] Iturriaga L., Lorca S., Sanchez J., “Existence and Multiplicity Results for the $p$-Laplacian with a $p$-Gradient Term”, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 729–743 | DOI | MR | Zbl
[6] Jinkai Li, Jingxue Yin, Yuanyuan Ke, “Existence of Positive Solutions for the $p$-Laplacian with $p$-Gradient Term”, J. of Math. An. Appl., 383 (2011), 147–158 | DOI | MR | Zbl
[7] Montenegro M., “Existence and Nonexistence of Solutions for Quasilinear Elliptic Equations”, J. Math. Anal. Appl., 245 (2000), 303–316 | DOI | MR | Zbl
[8] Nakao M., Chen C., “Global Existence and Gradient Estimates for the Quasilinear Parabolic Equations of $m$-Laplacian Type with a Nonlinear Convection Term”, J. Diff. Eq., 162 (2000), 224–250 | DOI | MR | Zbl
[9] Ruiz D., “A Priori Estimates and Existence of Positive Solutions for Strongly Nonlinear Problems”, J. Differential Equations, 199 (2004), 96–114 | DOI | MR | Zbl
[10] Tersenov Al. S., “The Preventive Effect of the Convection and of the Diffusion in the Blow-Up Phenomenon for Parabolic Equations”, Ann. I. H. Poincare, AN 21 (2004), 533–541 | DOI | MR | Zbl
[11] Wang X. J., Deng Y. B., “Existence of Multiple Solutions to Nonlinear Elliptic Equations of Nondivergence Form”, J. Math. Anal. Appl., 189 (1995), 617–630 | DOI | MR | Zbl
[12] Zou H. H., “A Priori Estimates and Existence for Quasi-Linear Elliptic Equations”, Calc. Var. Partial Differential Equations, 33 (2008), 417–437 | DOI | MR | Zbl
[13] Clapp M., del Pino M., Musso M., “Multiple Solutions for a Non-Homogeneous Elliptic Equation at the Critical Exponent”, Proc. Roy. Soc. Edinb. Sect., A134:1 (2004), 69–87 | DOI | MR | Zbl
[14] Dai Qiuyi, Peng Lihui, “Necessary and Sufficient Conditions for Existence of Nonnegative Solutions of Inhomogenuous $p$-Laplace Equation”, Acta Math. Scientia, 27B:1 (2007), 34–56 | DOI | MR | Zbl
[15] Dai Q., Yang J., “Positive Solutions of Inhomogeneous Elliptic Equations with Indefinite Data”, Nonlinear Anal., 58:5–6 (2004), 571–589 | DOI | MR | Zbl
[16] Fan X., “Positive Solutions to $p(x)$-Laplacian Dirichlet Problems with Sigh-Changing Nonline-Arities”, Math. Nachr., 284:11–12 (2011), 1435–1445 | DOI | MR | Zbl
[17] Tersenov Ar. S., “On Sufficient Conditions for the Existence of Radially Symmetric Solutions of the $p$-Laplace Equation”, Nonl. Anal., 95 (2014), 362–373 | DOI | MR | Zbl
[18] Tersenov Al. S., “Space Dimension Can Prevent the Blow-Up of Solutions for Parabolic Problems”, El. J. Differ. Eq., 165 (2007), 1–6 | MR
[19] Liang Z., “The Role of the Space Dimension on the Blow-Up for a Reaction-Diffusion Equation”, Appl. Math., 2:5 (2011), 575–578 | DOI | MR
[20] Tersenov Ar. S., “New a priori estimates of solutions to anisotropic elliptic equations”, Sib. Mat. J., 53:3 (2012), 539–551 | DOI | MR
[21] Tersenov Al. S., Tersenov Ar. S., “Global Solvability for a Class of Quasilinear Parabolic Equations”, Indiana Univ. Math. J., 50:4 (2001), 1899–1913 | DOI | MR | Zbl
[22] Tersenov Ar. S., “On the Solvability of Some Boundary Value Problems for Certain Class of Quasilinear Parabolic Equations”, Sib. Mat. J., 40:5 (1999), 972–980 | DOI | MR | Zbl
[23] Tersenov Al. S., Tersenov Ar. S., “On the Bernstein–Nagumo's Condition in the Theory of Nonlinear Parabolic Equations”, J. Reine Angew. Math., 572 (2004), 197–217 | MR | Zbl
[24] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, 2$^{\mathrm{nd}}$ ed., Springer-Verlag, Berlin–Heidelberg, 1983 | MR | Zbl