On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 130-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Dirichlet problem for the inhomogeneous $p$-Laplace equation with a nonlinear source and gradient term. The goal of the paper is to study the influence of the gradient term on the existence of radially symmetric solutions. Sufficient conditions for the existence of such solutions are given in explicit form through the data of the problem.
Keywords: $p$-laplacian with a gradient term, a priori estimates, radially symmetric solutions.
@article{VNGU_2016_16_1_a7,
     author = {Ar. S. Tersenov},
     title = {On the influence of gradient terms on the existence of solutions to {Dirichlet} problem for the $p${-Laplace} equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {130--142},
     year = {2016},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 130
EP  - 142
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/
LA  - ru
ID  - VNGU_2016_16_1_a7
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 130-142
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/
%G ru
%F VNGU_2016_16_1_a7
Ar. S. Tersenov. On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 130-142. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/

[1] Dall'Aglio A., Giachetti D., Segura de Leon S., “Global Existence for Parabolic Problems Involving the $p$-Laplacian and a Critical Gradient Term”, Indiana Univ. Math. J., 58:1 (2009), 1–48 | DOI | MR | Zbl

[2] de Figueiredo D., Lions P. L., Nussbaum R. D., “A Priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations”, J. Math. Pures Appl., 61 (1982), 41–63 | MR | Zbl

[3] Figueiredo D. G., Sanchez J., Ubilla P., “Quasilinear Equations with Dependence on the Gradient”, Nonlinear Anal., 71 (2009), 4862–4868 | DOI | MR | Zbl

[4] Figueiredo D. G., Yang J. F., “A Priori Bounds for Positive Solutions of a Non-Variational Elliptic System”, Comm. Partial Differential Equations, 26 (2001), 2305–2321 | DOI | MR | Zbl

[5] Iturriaga L., Lorca S., Sanchez J., “Existence and Multiplicity Results for the $p$-Laplacian with a $p$-Gradient Term”, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 729–743 | DOI | MR | Zbl

[6] Jinkai Li, Jingxue Yin, Yuanyuan Ke, “Existence of Positive Solutions for the $p$-Laplacian with $p$-Gradient Term”, J. of Math. An. Appl., 383 (2011), 147–158 | DOI | MR | Zbl

[7] Montenegro M., “Existence and Nonexistence of Solutions for Quasilinear Elliptic Equations”, J. Math. Anal. Appl., 245 (2000), 303–316 | DOI | MR | Zbl

[8] Nakao M., Chen C., “Global Existence and Gradient Estimates for the Quasilinear Parabolic Equations of $m$-Laplacian Type with a Nonlinear Convection Term”, J. Diff. Eq., 162 (2000), 224–250 | DOI | MR | Zbl

[9] Ruiz D., “A Priori Estimates and Existence of Positive Solutions for Strongly Nonlinear Problems”, J. Differential Equations, 199 (2004), 96–114 | DOI | MR | Zbl

[10] Tersenov Al. S., “The Preventive Effect of the Convection and of the Diffusion in the Blow-Up Phenomenon for Parabolic Equations”, Ann. I. H. Poincare, AN 21 (2004), 533–541 | DOI | MR | Zbl

[11] Wang X. J., Deng Y. B., “Existence of Multiple Solutions to Nonlinear Elliptic Equations of Nondivergence Form”, J. Math. Anal. Appl., 189 (1995), 617–630 | DOI | MR | Zbl

[12] Zou H. H., “A Priori Estimates and Existence for Quasi-Linear Elliptic Equations”, Calc. Var. Partial Differential Equations, 33 (2008), 417–437 | DOI | MR | Zbl

[13] Clapp M., del Pino M., Musso M., “Multiple Solutions for a Non-Homogeneous Elliptic Equation at the Critical Exponent”, Proc. Roy. Soc. Edinb. Sect., A134:1 (2004), 69–87 | DOI | MR | Zbl

[14] Dai Qiuyi, Peng Lihui, “Necessary and Sufficient Conditions for Existence of Nonnegative Solutions of Inhomogenuous $p$-Laplace Equation”, Acta Math. Scientia, 27B:1 (2007), 34–56 | DOI | MR | Zbl

[15] Dai Q., Yang J., “Positive Solutions of Inhomogeneous Elliptic Equations with Indefinite Data”, Nonlinear Anal., 58:5–6 (2004), 571–589 | DOI | MR | Zbl

[16] Fan X., “Positive Solutions to $p(x)$-Laplacian Dirichlet Problems with Sigh-Changing Nonline-Arities”, Math. Nachr., 284:11–12 (2011), 1435–1445 | DOI | MR | Zbl

[17] Tersenov Ar. S., “On Sufficient Conditions for the Existence of Radially Symmetric Solutions of the $p$-Laplace Equation”, Nonl. Anal., 95 (2014), 362–373 | DOI | MR | Zbl

[18] Tersenov Al. S., “Space Dimension Can Prevent the Blow-Up of Solutions for Parabolic Problems”, El. J. Differ. Eq., 165 (2007), 1–6 | MR

[19] Liang Z., “The Role of the Space Dimension on the Blow-Up for a Reaction-Diffusion Equation”, Appl. Math., 2:5 (2011), 575–578 | DOI | MR

[20] Tersenov Ar. S., “New a priori estimates of solutions to anisotropic elliptic equations”, Sib. Mat. J., 53:3 (2012), 539–551 | DOI | MR

[21] Tersenov Al. S., Tersenov Ar. S., “Global Solvability for a Class of Quasilinear Parabolic Equations”, Indiana Univ. Math. J., 50:4 (2001), 1899–1913 | DOI | MR | Zbl

[22] Tersenov Ar. S., “On the Solvability of Some Boundary Value Problems for Certain Class of Quasilinear Parabolic Equations”, Sib. Mat. J., 40:5 (1999), 972–980 | DOI | MR | Zbl

[23] Tersenov Al. S., Tersenov Ar. S., “On the Bernstein–Nagumo's Condition in the Theory of Nonlinear Parabolic Equations”, J. Reine Angew. Math., 572 (2004), 197–217 | MR | Zbl

[24] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, 2$^{\mathrm{nd}}$ ed., Springer-Verlag, Berlin–Heidelberg, 1983 | MR | Zbl