On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 130-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for the inhomogeneous $p$-Laplace equation with a nonlinear source and gradient term. The goal of the paper is to study the influence of the gradient term on the existence of radially symmetric solutions. Sufficient conditions for the existence of such solutions are given in explicit form through the data of the problem.
Keywords: $p$-laplacian with a gradient term, a priori estimates, radially symmetric solutions.
@article{VNGU_2016_16_1_a7,
     author = {Ar. S. Tersenov},
     title = {On the influence of gradient terms on the existence of solutions to {Dirichlet} problem for the $p${-Laplace} equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {130--142},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/}
}
TY  - JOUR
AU  - Ar. S. Tersenov
TI  - On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 130
EP  - 142
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/
LA  - ru
ID  - VNGU_2016_16_1_a7
ER  - 
%0 Journal Article
%A Ar. S. Tersenov
%T On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 130-142
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/
%G ru
%F VNGU_2016_16_1_a7
Ar. S. Tersenov. On the influence of gradient terms on the existence of solutions to Dirichlet problem for the $p$-Laplace equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 130-142. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a7/