On a solvability of the nonlinear inverse problem for the hyperbolic equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 106-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the nonlinear inverse problem with an unknown time depended coefficient for a second-order hyperbolic equation. The problem is stated as follows: it is required to find a solution and an unknown time depended coefficient at the solution in the equation. In the article we prove the theorems of the existence and the uniqueness of the problem’s regular solution. To study solvability of the inverse problem, we realize a conversion from the initial inverse problem to a some direct nonlocal supplementary problem for a high-order hyperbolic equation. We prove the solvability of the supplementary problem. Then we realize a conversion to the first problem again and as a result we receive the solvability of the inverse problem.
Keywords: inverse problem, hyperbolic equation, weighted equation, the method of continuation on a parameter, the fixed point theorem, cut-off functions, the method of regularization, nonlocal problem.
@article{VNGU_2016_16_1_a6,
     author = {R. R. Safiullova},
     title = {On a solvability of the nonlinear inverse problem for the hyperbolic equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {106--129},
     year = {2016},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a6/}
}
TY  - JOUR
AU  - R. R. Safiullova
TI  - On a solvability of the nonlinear inverse problem for the hyperbolic equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 106
EP  - 129
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a6/
LA  - ru
ID  - VNGU_2016_16_1_a6
ER  - 
%0 Journal Article
%A R. R. Safiullova
%T On a solvability of the nonlinear inverse problem for the hyperbolic equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 106-129
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a6/
%G ru
%F VNGU_2016_16_1_a6
R. R. Safiullova. On a solvability of the nonlinear inverse problem for the hyperbolic equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 106-129. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a6/

[1] Anikonov Yu. E., Inverse Problems for Kinetic and Other Evolution Equations, VSP, Utrecht, 1999 | MR

[2] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002 | MR | Zbl

[3] A. M. Denisov, Introduction in the Theory of the Inverse Problems: the Educational Grant, Isd. MGU, M., 1994 (in Russian)

[4] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006 | MR | Zbl

[5] S. I. Kabanihin, The Projective-Differential Methods for Determination of the Coefficients in the Hyperbolic Equations, Nauka, Sib. otdel., Novosibirsk, 1988 (in Russian)

[6] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[7] M. M. Lavrentiev, V. G. Romanov, V. G. Vasiliev, Multidimensional Inverse Problems for the Differential Equations, Nauka, Novosibirsk, 1969 (in Russian)

[8] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcell Dekker Inc., New York, 2000 | MR | Zbl

[9] V. G. Romanov, Inverse Problems of Mathematical Physics, Nauka, M., 1984 (in Russian)

[10] V. G. Romanov, S. I. Kabanihin, Inverse Problems of Geophysics, Nauka, M., 1991 (in Russian)

[11] S. I. Kabanikhin, Inverse and Ill-Posed Problems. The Educational Grant, Sib. science publ., Novosibirsk, 2008

[12] N. I. Ivanchov, “On the Inverse Problems for the Simultaneous Determination of the Coefficients of Heat Conductivity and Thermal Capacity”, Sib. Mat. Zh., 35:3 (1994), 612–621 (in Russian) | MR | Zbl

[13] Yu. Ya. Belov, R. V. Sorokin, I. V. Frolenkov, The Approximation and the Correctness of the Boundary-Value Problems for the Differential Equations: the Educational Grant, Sib. fed. univ., Krasnoyarsk, 2012 (in Russian)

[14] A. I. Kozhanov, “On a solvability of the some nonlinear inverse problems for the composite type equations”, Nonlocal Boundary Value Problems and Related Problems Of Biology, Informatics, Physics, Tr. of the 3 Intern. Conf. (Nal'chik, 2006), 42–51 (in Russian)

[15] A. I. Kozhanov, “The parabolic equations with the unknown time-dependent coefficient”, J. of Vych. Math. and Math. Phys., 45:12 (2005), 2168–2184 (in Russian) | MR | Zbl

[16] N. V. Muzilev, “On the uniqueness of the simultaneous determination of the coefficients of heat conductivity and thermal capacity”, J. of Vych. Math. and Math. Phys., 23:1 (1983), 102–108 (in Russian) | MR

[17] I. R. Valitov, A. I. Kozhanov, “Inverse problems for the hyperbolic equations: the case of unknown coefficients, time-dependent”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:1 (2006), 3–18 (in Russian) | MR

[18] S. S. Pavlov, “Nonlinear inverse problems for the multidimensional hyperbolic equations with integrated overdetermination”, Mat. Zametki YaGU, 19:2 (2011), 128–154 (in Russian)

[19] R. R. Safiullova, “Inverse problems for the second order hyperbolic equations with unknown time-dependent coefficient”, Vestn. SUSU, 6:4 (2013), 73–86 (in Russian)

[20] Trenogin V. A., Functional analysis, Nauka, M., 1980 (in Russian) | MR

[21] S. Ya. Yakubov, Linear differential-operator equations and their applications, Elm, Baku, 1985 (in Russian)

[22] A. I. Kozhanov, “On a solvability of the some spatial and nonlocal boundary value problems for the linear hyperbolic second order equations”, Mat. Zametki, 20:2 (2011), 254–268 (in Russian) | DOI

[23] A. I. Kozhanov, “The nonlinear loaded equations and the inverse problems”, J. of Vych. Math. and Math. Phys., 44:4 (2004), 694–716 (in Russian) | MR | Zbl

[24] B. P. Demidovich, Lectures on Mathematical Stability, Nauka, M., 1967 (in Russian) | MR

[25] O. A. Ladizhenskaya, N. N. Uraltseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1973 (in Russian) | MR