@article{VNGU_2016_16_1_a5,
author = {N. P. Lazarev},
title = {Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous {Timoshenko-type} plate with crack},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {90--105},
year = {2016},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/}
}
TY - JOUR AU - N. P. Lazarev TI - Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 90 EP - 105 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/ LA - ru ID - VNGU_2016_16_1_a5 ER -
%0 Journal Article %A N. P. Lazarev %T Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 90-105 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/ %G ru %F VNGU_2016_16_1_a5
N. P. Lazarev. Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 90-105. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/
[1] Khludnev A. M., Leugering G., “On Elastic Bodies with Thin Rigid Inclusions and Cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl
[2] Lazarev N. P., “Shape Sensitivity Analysis of the Energy Integrals for the Timoshenko-type Plate Containing a Crack on the Boundary of a Rigid Inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl
[3] N. V. Neustroeva, “Rigid switching on in the contact problem for elastic plates”, J. Appl. Indust. Math., 4:4 (2010), 526–538 | DOI | MR | Zbl
[4] Rudoy E. M., “Shape Derivative of the Energy Functional in a Problem for a Thin Rigid Inclusion in an Elastic Body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[5] Khludnev A. M., “Optimal Control of Crack Growth in Elastic Body with Inclusions”, Eur. J. Mech. A Solids, 29:3 (2010), 392–399 | DOI | MR
[6] V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl
[7] Khludnev A. M., Negri M., “Optimal Rigid Inclusion Shapes in Elastic Bodies with Cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl
[8] Dal Corso F., Bigoni D., Gei M., “The Stress Concentration near a Rigid Line Inclusion in a Prestressed, Elastic Material. Part I. Full-field Solution and Asymptotics”, J. Mech. Phys. Solids, 56:3 (2008), 815–838 | DOI | MR | Zbl
[9] I. I. Il'ina, V. V. Sil'vestrov, “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids, 40:3 (2005), 123–133 | MR
[10] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic Behaviour at a Tip of a Rigid Line Inclusion in Linearized Elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[11] E. M. Rudoy, “Griffith's formula and Cherepanov-Rice's integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR | MR | Zbl
[12] Xiao Z. M., Chen B. J., “Stress Intensity Factor for a Griffith Crack Interacting with a Coated Inclusion”, Int. J. Fract., 108:3 (2001), 193–205 | DOI
[13] Khludnev A. M., Novonty A. A., Sokolowsky J., Zochowski A., “Shape and Topology Sensitivity Analysis for Cracks in Elastic Bodies on Boundaries of Rigid Inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[14] Khludnev A. M., “Shape Control of Thin Rigid Inclusions and Cracks in Elastic Bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[15] A. M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Indust. Math., 5:4 (2011), 582–594 | DOI | MR | Zbl
[16] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000
[17] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)
[18] Kovtunenko V. A., “A Hemivariational Inequality in Crack Problems”, Optimization, 60:8–9 (2011), 1071–1089 | DOI | MR | Zbl
[19] Khludnev A. M., Kozlov V. A., “Asymptotics of Solutions near Crack Tips for Poisson Equation with Inequality Type Boundary Conditions”, Z. Angew. Math. Phys., 59 (2008), 264–280 | DOI | MR | Zbl
[20] Knees D., Schroder A., “Global Spatial Regularity for Elasticity Models with Cracks, Contact and Other Nonsmooth Constraints”, Math. Meth. Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl
[21] Lazarev N. P., Rudoy E. M., “Shape Sensitivity Analysis of Timoshenko's Plate with a Crack Under the Nonpenetration Condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl
[22] Sacco E., Lebon F., “A Damage-Friction Interface Model Derived from Micromechanical Approach”, Int. J. Solids Struct., 49:26 (2012), 3666–3680 | DOI
[23] B. L. Pelekh, Theory of Shells with Finite Shear Modulus, Nauk. Dumka, Kiev, 1973 (in Russian)
[24] Lazarev N. P., “An Equilibrium Problem for the Timoshenko-type Plate Containing a Crack on the Boundary of a Rigid Inclusion”, J. of Siberian Federal University. Mat. and Phys., 6:1 (2013), 53–62
[25] N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR | Zbl
[26] N. P. Lazarev, “The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 32–45 (in Russian)
[27] N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR | Zbl
[28] Kovtunenko V. A., “Primal-Dual Methods of Shape Sensitivity Analysis for Curvilinear Cracks with Nonpenetration”, IMA J. Appl. Math., 71:5 (2006), 635–657 | DOI | MR | Zbl
[29] Hintermüller M., Kovtunenko V. A., “From Shape Variation to Topology Changes in Constrained Minimization: a Velocity Method Based Concept”, Optim. Methods Softw., 26:4–5 (2011), 513–532 | DOI | MR | Zbl
[30] E. M. Rudoy, “Differentiation of energy functionals in the problem of a curvilinear crack in a plate with a possible contact of the crack faces”, J. Appl. Mech. Tech. Phys., 49:5 (2008), 832–845 | DOI | MR
[31] Lazzaroni G., Toader R., “Energy Release Rate and Stress Intensity Factor in Antiplane Elasticity”, J. Math. Pures Appl., 95:6 (2011), 565–584 | DOI | MR | Zbl
[32] V. Z. Parton, E. M. Morozov, Mechanics of Elastic-Plastic Fracture, Hemisphere Publishing Corp., Washington, 1989 | MR | Zbl
[33] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York, 1979 | Zbl
[34] C. Baiocchi, A. Capello, Variational and Quasivariational Inequalities: Application to Free Boundary Problems, Wiley, New York, 1984 | MR
[35] V. G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | Zbl