Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 90-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equilibrium problems for non-homogeneous plates with a rigid delaminated inclusion are considered. In this case, there is a crack between the rigid inclusion and an elastic part of the plate. Nonpenetration conditions on the crack faces are given in the form of inequalities. We analyze the dependence of solutions and derivatives of the energy functionals on the size of rigid inclusion. The existence of the solution to an optimal control problem is proved. For that problem the cost functional is defined by derivatives of the energy functional with respect to a crack perturbation parameter while the size parameter of rigid inclusion is chosen as the control function.
Keywords: plate, rigid inclusion, nonpenetration condition, variational inequality.
@article{VNGU_2016_16_1_a5,
     author = {N. P. Lazarev},
     title = {Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous {Timoshenko-type} plate with crack},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {90--105},
     year = {2016},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 90
EP  - 105
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/
LA  - ru
ID  - VNGU_2016_16_1_a5
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 90-105
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/
%G ru
%F VNGU_2016_16_1_a5
N. P. Lazarev. Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 90-105. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a5/

[1] Khludnev A. M., Leugering G., “On Elastic Bodies with Thin Rigid Inclusions and Cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[2] Lazarev N. P., “Shape Sensitivity Analysis of the Energy Integrals for the Timoshenko-type Plate Containing a Crack on the Boundary of a Rigid Inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl

[3] N. V. Neustroeva, “Rigid switching on in the contact problem for elastic plates”, J. Appl. Indust. Math., 4:4 (2010), 526–538 | DOI | MR | Zbl

[4] Rudoy E. M., “Shape Derivative of the Energy Functional in a Problem for a Thin Rigid Inclusion in an Elastic Body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[5] Khludnev A. M., “Optimal Control of Crack Growth in Elastic Body with Inclusions”, Eur. J. Mech. A Solids, 29:3 (2010), 392–399 | DOI | MR

[6] V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl

[7] Khludnev A. M., Negri M., “Optimal Rigid Inclusion Shapes in Elastic Bodies with Cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl

[8] Dal Corso F., Bigoni D., Gei M., “The Stress Concentration near a Rigid Line Inclusion in a Prestressed, Elastic Material. Part I. Full-field Solution and Asymptotics”, J. Mech. Phys. Solids, 56:3 (2008), 815–838 | DOI | MR | Zbl

[9] I. I. Il'ina, V. V. Sil'vestrov, “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids, 40:3 (2005), 123–133 | MR

[10] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic Behaviour at a Tip of a Rigid Line Inclusion in Linearized Elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[11] E. M. Rudoy, “Griffith's formula and Cherepanov-Rice's integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR | MR | Zbl

[12] Xiao Z. M., Chen B. J., “Stress Intensity Factor for a Griffith Crack Interacting with a Coated Inclusion”, Int. J. Fract., 108:3 (2001), 193–205 | DOI

[13] Khludnev A. M., Novonty A. A., Sokolowsky J., Zochowski A., “Shape and Topology Sensitivity Analysis for Cracks in Elastic Bodies on Boundaries of Rigid Inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[14] Khludnev A. M., “Shape Control of Thin Rigid Inclusions and Cracks in Elastic Bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[15] A. M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Indust. Math., 5:4 (2011), 582–594 | DOI | MR | Zbl

[16] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[17] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[18] Kovtunenko V. A., “A Hemivariational Inequality in Crack Problems”, Optimization, 60:8–9 (2011), 1071–1089 | DOI | MR | Zbl

[19] Khludnev A. M., Kozlov V. A., “Asymptotics of Solutions near Crack Tips for Poisson Equation with Inequality Type Boundary Conditions”, Z. Angew. Math. Phys., 59 (2008), 264–280 | DOI | MR | Zbl

[20] Knees D., Schroder A., “Global Spatial Regularity for Elasticity Models with Cracks, Contact and Other Nonsmooth Constraints”, Math. Meth. Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl

[21] Lazarev N. P., Rudoy E. M., “Shape Sensitivity Analysis of Timoshenko's Plate with a Crack Under the Nonpenetration Condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl

[22] Sacco E., Lebon F., “A Damage-Friction Interface Model Derived from Micromechanical Approach”, Int. J. Solids Struct., 49:26 (2012), 3666–3680 | DOI

[23] B. L. Pelekh, Theory of Shells with Finite Shear Modulus, Nauk. Dumka, Kiev, 1973 (in Russian)

[24] Lazarev N. P., “An Equilibrium Problem for the Timoshenko-type Plate Containing a Crack on the Boundary of a Rigid Inclusion”, J. of Siberian Federal University. Mat. and Phys., 6:1 (2013), 53–62

[25] N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR | Zbl

[26] N. P. Lazarev, “The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 32–45 (in Russian)

[27] N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR | Zbl

[28] Kovtunenko V. A., “Primal-Dual Methods of Shape Sensitivity Analysis for Curvilinear Cracks with Nonpenetration”, IMA J. Appl. Math., 71:5 (2006), 635–657 | DOI | MR | Zbl

[29] Hintermüller M., Kovtunenko V. A., “From Shape Variation to Topology Changes in Constrained Minimization: a Velocity Method Based Concept”, Optim. Methods Softw., 26:4–5 (2011), 513–532 | DOI | MR | Zbl

[30] E. M. Rudoy, “Differentiation of energy functionals in the problem of a curvilinear crack in a plate with a possible contact of the crack faces”, J. Appl. Mech. Tech. Phys., 49:5 (2008), 832–845 | DOI | MR

[31] Lazzaroni G., Toader R., “Energy Release Rate and Stress Intensity Factor in Antiplane Elasticity”, J. Math. Pures Appl., 95:6 (2011), 565–584 | DOI | MR | Zbl

[32] V. Z. Parton, E. M. Morozov, Mechanics of Elastic-Plastic Fracture, Hemisphere Publishing Corp., Washington, 1989 | MR | Zbl

[33] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York, 1979 | Zbl

[34] C. Baiocchi, A. Capello, Variational and Quasivariational Inequalities: Application to Free Boundary Problems, Wiley, New York, 1984 | MR

[35] V. G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | Zbl