Local analysis of curves and surfaces intersection problem using tracing
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 57-89

Voir la notice de l'article provenant de la source Math-Net.Ru

The tracing method for finding intersections of parametric curves and surfaces is considered. The suggested approach is based on the numeric predictor-corrector method, where Runge–Kutta or Adams method is the predictor, and Newton’s method is the corrector. Special equation system is used to find simple singular intersections, its rank is analysed. The tracing step is chosen adaptively. The resulting curve is represented as cubic spline. Finally, the problems of finishing tracing exactly and tracing along boundary are considered.
Keywords: surfaces intersection, curve tracing, Newton’s method.
@article{VNGU_2016_16_1_a4,
     author = {S. Yu. Gatilov},
     title = {Local analysis of curves and surfaces intersection problem using tracing},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {57--89},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a4/}
}
TY  - JOUR
AU  - S. Yu. Gatilov
TI  - Local analysis of curves and surfaces intersection problem using tracing
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 57
EP  - 89
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a4/
LA  - ru
ID  - VNGU_2016_16_1_a4
ER  - 
%0 Journal Article
%A S. Yu. Gatilov
%T Local analysis of curves and surfaces intersection problem using tracing
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 57-89
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a4/
%G ru
%F VNGU_2016_16_1_a4
S. Yu. Gatilov. Local analysis of curves and surfaces intersection problem using tracing. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 57-89. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a4/