@article{VNGU_2016_16_1_a4,
author = {S. Yu. Gatilov},
title = {Local analysis of curves and surfaces intersection problem using tracing},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {57--89},
year = {2016},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a4/}
}
S. Yu. Gatilov. Local analysis of curves and surfaces intersection problem using tracing. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 57-89. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a4/
[1] Hiroyuki Nakamura, Masatake Higashi, Mamoru Hosaka, “Robust Computation of Intersection Graph Between Two Solids”, Computer Graphics Forum, 16:3 (1997), 79–88
[2] Les Piegl, Wayne Tiller, The NURBS Book, 2$^{\mathrm{nd}}$ ed., Springer-Verlag, New York, 1997
[3] Miller J. R., Goldman R. N., “Geometric Algorithms for Detecting and Calculating All Conic Sections in the Intersection of Any Two Natural Quadric Surfaces”, Graph. Models Image Process, 57:1 (1995), 55–66 | DOI
[4] Dupont L., Lazard D., Lazard S., Petitjean S., “Near-Optimal Parameterization of the Intersection Of Quadrics. I: The Generic Algorithm”, J. of Symbolic Computation, 43:3 (2008), 168–191 | DOI | MR | Zbl
[5] Ku-Jin Kim, Torus and Simple Surface Intersection Based on Configuration Space Approach, Ph.D. thesis, Pohang University of Science and Technology, 1998
[6] Sederberg Th. W., Parry S. R., “Comparison of Three Curve Intersection Algorithms”, Comput. Aided Des., 18:1 (1986), 58–63 | DOI
[7] Sederberg T., Nishita T., “Curve Intersection Using Bézier Clipping”, Computer-Aided Design, 22:9 (1990), 538–549 | DOI | Zbl
[8] Patrikalakis N. M., Takashi Maekawa, Shape Interrogation for Computer Aided Design and Manufacturing, Springer, 2002 | MR | Zbl
[9] Toth D. L., “On Ray Tracing Parametric Surfaces”, SIGGRAPH Comput. Graph, 19:3 (1985), 171–179 | DOI
[10] Martin W., Cohen E., Fish R., Shirley P., “Practical Ray Tracing of Trimmed Nurbs Surfaces”, J. Graph. Tools, 5:1 (2000), 27–52 | DOI
[11] Pabst H.-F., Springer J. P., Schollmeyer A., Lenhardt R., Lessig C., Froehlich B., “Ray Casting of Trimmed Nurbs Surfaces on the GPU”, IEEE Symposium on Interactive Ray Tracing (2006), 151–160
[12] Bajaj Ch. L., Hoffmann Ch. M., Lynch R. E., Hopcroft J. E., “Tracing Surface Intersections”, Computer Aided Geometric Design, 5:4 (1988), 285–307 | DOI | MR | Zbl
[13] Barnhill R. E., Kersey S. N., “A Marching Method for Parametric Surface/Surface Intersection”, Computer Aided Geometric Design, 7:1–4 (1990), 257–280 | DOI | MR | Zbl
[14] Barnhill R. E., Farin G., Jordan M., Piper B. R., “Surface/Surface Intersection”, Computer Aided Geometric Design, 4:1–2 (1987), 3–16 | DOI | MR | Zbl
[15] Golovanov N., Geometric Modeling: The Mathematics of Shapes. CreateSpace, Independent Publishing Platform, 2014
[16] Hohmeyer M. E., Robust and Efficient Surface Intersection for Solid Modeling, Ph. D. thesis, University of California, 1986
[17] Grandine Th. A., Klein F. W., “A New Approach to the Surface Intersection Problem”, Comput. Aided Geom. Des., 14:2 (1997), 111–134 | DOI | MR | Zbl
[18] Krishnan Sh., Manocha D., “An Efficient Surface Intersection Algorithm Based on Lower-Dimensional Formulation”, ACM Trans. Graph., 16:1 (1997), 74–106 | DOI | MR
[19] Kubica B. J., “Interval Methods for Solving Underdetermined Nonlinear Systems”, Reliable Computing, 15 (2011), 207–217 | MR
[20] Gatilov S., “Properties of Nonlinear Systems and Convergence of the Newton-Raphson Method in Geometric Constraint Solving”, Bull. Nov. Comp. Center, 32 (2011), 57–75
[21] Dennis J. E., Schnabel R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics in Applied Mathematics, 16, SIAM, Philadelphia, 1996 | MR | Zbl
[22] Xiao-Chuan Cai, Keyes D. E., “Nonlinearly Preconditioned Inexact Newton Algorithms”, SIAM J. Sci. Comput., 24:1 (2002), 183–200 | DOI | MR | Zbl
[23] Gatilov S., “Using Low-Rank Approximation of the Jacobian Matrix in the Newton-Raphson Method to Solve Certain Singular Equations”, J. of Computational and Applied Mathematics, 272 (2014), 8–24 | DOI | MR | Zbl
[24] Allgower E. L., Georg K., Introduction to Numerical Continuation Methods, Classics in Applied Mathematics, 45, SIAM, 2003 | MR | Zbl
[25] Hiroshi Akima, “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures”, J. ACM, 17:4 (1970), 589–602 | DOI | Zbl
[26] Catmull E., Rom R., “A Class of Local Interpolating Splines”, Computer aided geometric design, eds. R. E. Barnhill, R. F. Reisenfeld, Academic Press, New York, 1974, 317–326 | DOI | MR
[27] Bajaj Ch. L., Guoliang Xu, “Nurbs Approximation of Surface/Surface Intersection Curves”, Adv. in Computational Math., 2:1 (1994), 1–21 | DOI | MR | Zbl
[28] Dormand J. R., Prince P. J., “A Family of Embedded Runge–Kutta Formulae”, J. of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl
[29] Floater M. S., Evaluation and Properties of the Derivative of a Nurbs Curve, Academic Press Professional, Inc., San Diego, 1992, 261–274 | MR
[30] Kyu-Yeul Lee, Doo-Yeoun Cho, Tae-Wan Kim, “A Tracing Algorithm for Surface-Surface Intersections on Surface Boundaries”, J. of Computer Science and Technology, 17:6 (2002), 843–850 | DOI | MR | Zbl