@article{VNGU_2016_16_1_a3,
author = {A. A. Belozerov and E. I. Romenski and N. A. Lebedeva},
title = {Numerical modeling of gas-liquid compressible pipe flow based on thermodynamically compatible systems theory},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {40--56},
year = {2016},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a3/}
}
TY - JOUR AU - A. A. Belozerov AU - E. I. Romenski AU - N. A. Lebedeva TI - Numerical modeling of gas-liquid compressible pipe flow based on thermodynamically compatible systems theory JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2016 SP - 40 EP - 56 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a3/ LA - ru ID - VNGU_2016_16_1_a3 ER -
%0 Journal Article %A A. A. Belozerov %A E. I. Romenski %A N. A. Lebedeva %T Numerical modeling of gas-liquid compressible pipe flow based on thermodynamically compatible systems theory %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2016 %P 40-56 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a3/ %G ru %F VNGU_2016_16_1_a3
A. A. Belozerov; E. I. Romenski; N. A. Lebedeva. Numerical modeling of gas-liquid compressible pipe flow based on thermodynamically compatible systems theory. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 40-56. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a3/
[1] Bratland O., Pipe Flow 2: Multi-phase Flow Assurance, , 2009 http://www.drbratland.com/free-book-pipe-flow-2-multi-phase-flow-assurance
[2] Ishii M., Hibiki T., Thermo-Fluid Dynamics of Two-Phase Flow, Springer, 2011 | MR | Zbl
[3] Stewart H. B., Wendroff B., “Two-phase flow: Models and Methods”, J. of Computational Physics, 56:3 (1984), 363–409 | DOI | MR | Zbl
[4] Staedtke H., Franchello G., Worth B., Graf U., Romstedt P., Kumbaro A., Garcia-Cascales J., Paillere H., Deconinck H., Ricchiuto M., Smith B., De Cachard F., Toro E.Ḟ., Romenski E., Mimouni S., “Advanced Three-Dimensional Two-Phase Flow Simulation Tools for Application to Reactor Safety (ASTAR)”, Nuclear Engineering and Design, 235:2–4 (2005), 379–400 | DOI
[5] Zhibaedov V. D., Lebedeva N. A., Osiptsov A. A., Sin'kov K. F., “On the Hyperbolicity of One-Dimensional Models for Transient Two-Phase Flow in a Pipeline”, Fluid Dynamics, 51:1 (2016), 56–69 | DOI | Zbl
[6] Godunov S. K., Romenski E., Elements of Continuum Mechanics and Conservation Laws, Kluwer Academic/Plenum Publishers, New York, 2003 | MR | Zbl
[7] Romenski E., Drikakis D., Toro E. F., “Conservative Models and Numerical Methods for One-Dimensional Compressible Two-Phase Flow”, J. Sci. Comp., 42 (2010), 68–95 | DOI | MR | Zbl
[8] Romenski E., Belozerov A. A., Peshkov I. M., “Conservative Formulation for Compressible Multiphase Flow”, Quart. Appl. Math., 74 (2015), 113–136 | DOI | MR
[9] Shaposhnikov D., Lebedeva N., Starostin A., “Slug Capturing Scheme for Gas-Liquid Pipe Flows Based on Two-Pressure Two-Fluid Model”, AIP Conf. Proc. ICNAAM (2014)
[10] Osiptsov A. A., Sin'kov K. F., Spesivtsev P. E., “Justification of the Drift-Flux Model for Two-Phase Flow in a Circular Pipe”, Fluid Dynamics, 49:5 (2014), 614–626 | DOI | MR | Zbl
[11] Bonizzi M., Andreussi P., Banerjee S., “Flow Regime Independent, High Resolution Multi-Field Modelling of Near-Horizontal Gas-Liquid Flows in Pipelines”, Int. J. of Multiphase Flow, 35:1 (2009), 34–46 | DOI
[12] Gottlieb S., “On High-Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations”, J. Sci. Comp., 25 (2005), 105–128 | MR | Zbl
[13] Shu C. W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997 | MR
[14] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3$^{\mathrm{rd}}$ Ed., Springer, 2009 | MR | Zbl
[15] Ransom V. H., “Numerical Benchmark Tests”, Multiphase Science and Technology, v. 3, eds. G. F. Hewitt, J. M. Delhaye, N. Zuber, Hemisphere, Washington, 1987
[16] Evje S., Flatten T., “Weakly Implicit Numerical Schemes for a Two-Fluid Model”, SIAM J. Sci. Comp., 26 (2005), 1449–1484 | DOI | MR | Zbl
[17] Issa R. I., Kempf M. H. W., “Simulation of Slug Flow in Horizontal and Nearly Horizontal Pipes with Two-Fluid Model”, Int. J. of Multiphase Flow, 29:1 (2003), 69–95 | DOI | Zbl
[18] Barnea D., Taitel Y., “Kelvin–Helmholtz Stability Criteria for Stratified Flow: Viscous versus Non-Viscous (Inviscid) Approaches”, Int. J. of Multiphase Flow, 19:4 (1993), 639–649 | DOI | Zbl