On solvability of some parametric inverse problem for parabolic equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 29-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate solvability of a parametric inverse problem for $n$-dimensional parabolic equation. Sufficient conditions for existence and uniqueness of solutions are obtained.
Keywords: inverse problem, solvability.
Mots-clés : parabolic equation
@article{VNGU_2016_16_1_a2,
     author = {Yu. Ya. Belov and K. V. Korshun},
     title = {On solvability of some parametric inverse problem for parabolic equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {29--39},
     year = {2016},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a2/}
}
TY  - JOUR
AU  - Yu. Ya. Belov
AU  - K. V. Korshun
TI  - On solvability of some parametric inverse problem for parabolic equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 29
EP  - 39
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a2/
LA  - ru
ID  - VNGU_2016_16_1_a2
ER  - 
%0 Journal Article
%A Yu. Ya. Belov
%A K. V. Korshun
%T On solvability of some parametric inverse problem for parabolic equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 29-39
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a2/
%G ru
%F VNGU_2016_16_1_a2
Yu. Ya. Belov; K. V. Korshun. On solvability of some parametric inverse problem for parabolic equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 29-39. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a2/

[1] Romanov V. G., Inverse Problems of Mathematical Physics, Nauka, M., 1984 (in Russian)

[2] Belov Yu. Ya., Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002 | MR | Zbl

[3] Kozhanov A. I., “Nonlinear loaded equations and inverse problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 657–675 | MR | Zbl

[4] Anikonov Yu. E., “Inverse Problems for Evolution and Differential-Difference Equations with a Parameter”, J. of Inverse and Ill-Posed Problems, 11:5 (2003), 439–473 | DOI | MR | Zbl

[5] Anikonov Yu. E., “The Indetification Problem for the Functional Equation with a Parameter”, J. of Inverse and Ill-Posed Problems, 20:4 (2012), 401–409 | DOI | MR | Zbl

[6] Yu. E. Anikonov, M. V. Neshchadim, “On inverse problems for equations of mathematical physics with parameter”, Siberian Electronic Mathematical Reports, 9 (2012), 45–64 | MR | Zbl

[7] Yu. Ya. Belov, “A linear stationary problem of ocean dynamics”, Mathematical Notes of the Academy of Sciences of the USSR, 26:1 (1979), 513–517 | DOI | MR | Zbl

[8] Yu. Ya. Belov, “Splitting in a degenerate quasilinear parabolic equation”, Mathematical Notes of the Academy of Sciences of the USSR, 46:6 (1989), 906–909 | DOI | MR | Zbl

[9] Yu. Ya. Belov, “Theorems of unique solvability and approximation of some boundary value problems for systems of equations, describing the flow of the ocean”, Sib. Mat. Zh., 20:6 (1979), 1206–1225 (in Russian) | MR | Zbl

[10] V. N. Vragov, Boundary Problems for Nonclassical Mathematical Physics Equations, Novosibirsk State University, Novosibirsk, 1983 (in Russian)

[11] J. L. Lions, Quelques Méthodes de Résolution des Problèms aux Limites non Linéaire, Gauthier-Villars, Paris, 1969 | MR

[12] S. S. Akhtamova, Yu. Ya. Belov, “About certain inverse problems for parabolic equations”, Dokl. AN SSSR, 316:4 (1991), 791–795 (in Russian) | Zbl

[13] Yu. Ya. Belov, “On an inverse problem for a semilinear parabolic equation”, Dokl. AN SSSR, 316:5 (1991), 1034–1038 (in Russian) | Zbl

[14] Yu. Ya. Belov, E. G. Savateev, “On an inverse problem for a parabolic equation with an unknown coefficient at the time derivative”, Dokl. AN SSSR, 334:5 (1991), 800–804 (in Russian)

[15] Yu. Ya. Belov, K. V. Korshun, “An identification problem of source function in the Burgers-type equation”, J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 497–506 (in Russian)

[16] Yu. Ya. Belov, K. V. Korshun, “On an inverse problem for a Burgers-type equation”, Sib. Zh. Ind. Mat., 16:3(55) (2013), 28–40 (in Russian) | Zbl

[17] P. N. Vabishchevich, Fictitious domains method in problems of mathematical physics, Izd-vo MGU, M., 1991 (in Russian)

[18] A. N. Konovalov, “Fictitious domains method in problems of filtration of two-phase incompressible fluid based on capillary forces”, Chisl. Metody Mekh. Splosh. Sredy, 3:5 (1972), 52–67 (in Russian) | MR

[19] M. K. Orunkhanov, Sh. Smagulov, “About theory of fictitious domains method”, Chisl. Metody Mekh. Splosh. Sredy, 13:2 (1982), 125–137 (in Russian) | MR | Zbl

[20] Yu. Ya. Belov, “On some systems of linear differential equations with a small parameter”, Dokl. AN SSSR, 231:5 (1976), 1037–1040 (in Russian) | MR | Zbl

[21] A. P. Oskolkov, “On a linear parabolic system with a small parameter approximating the Navier–Stokes equations”, Zapiski Nauch. Seminar. LOMI AN SSSR, 32, 1971, 78–103 (in Russian)

[22] Yu. Ya. Belov, R. V. Sorokin, I. V. Frolenkov, Approximation and Correctness, Krasnoyarsk, 2012 (in Russian)

[23] Yu. Ya. Belov, S. A. Kantor, The Method of Weak Approximation, Krasnoyarsk, 1999 (in Russian)

[24] N. N. Yanenko, “About weak approximation of differential equations”, Sib. Mat. Zh., 5:6 (1964), 1431–1434 (in Russian) | MR | Zbl

[25] A. M. Il'in, A. S. Kalashnikov, O. A. Oleynik, “Linear equations of the second order of parabolic type”, Rus. Math. Surv., 17:3 (1962), 1–144 | DOI

[26] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley Sons, Inc., New York, 1958 | MR | Zbl

[27] MacGillivray G., Combinatorial Arguments, Study Notes for Discrete Mathematics, Univ. of Victoria, 2001 http://www.math.uvic.ca/faculty/gmacgill/guide/combargs.pdf