Comparative analysis of solutions to $3^{rd}$ and $4^{th}$ order algebraic equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 14-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three methods of solving a cubic equation are analyzed: del Ferro–Tartaglia’s, Vieta’s, and F. Klein’s. Much attention is given to the irreducible case. Three methods of solving a quartic equation are compared: Ferrari–Cardano’s, Descartes’, and Euler’s. A new derivation of Euler’s formulas for the roots of a quartic algebraic equation is given. Some new methods of symbolic computation of roots of cubic and quartic equations are proposed.
Keywords: cubic, resolvent.
Mots-clés : quartic equation, Cardano’s formula, discriminant
@article{VNGU_2016_16_1_a1,
     author = {N. S. Astapov and I. S. Astapov},
     title = {Comparative analysis of solutions to $3^{rd}$ and $4^{th}$ order algebraic equations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {14--28},
     year = {2016},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a1/}
}
TY  - JOUR
AU  - N. S. Astapov
AU  - I. S. Astapov
TI  - Comparative analysis of solutions to $3^{rd}$ and $4^{th}$ order algebraic equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2016
SP  - 14
EP  - 28
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a1/
LA  - ru
ID  - VNGU_2016_16_1_a1
ER  - 
%0 Journal Article
%A N. S. Astapov
%A I. S. Astapov
%T Comparative analysis of solutions to $3^{rd}$ and $4^{th}$ order algebraic equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2016
%P 14-28
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a1/
%G ru
%F VNGU_2016_16_1_a1
N. S. Astapov; I. S. Astapov. Comparative analysis of solutions to $3^{rd}$ and $4^{th}$ order algebraic equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 16 (2016) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/VNGU_2016_16_1_a1/

[1] V. B. Alekseev, Abel's Theorem in Problems and Solutions, Nauka, M., 1976 (in Russian)

[2] F. Klein, Elementarmathematik vom Höheren Standpunkte aus, v. 1, Springer-Verlag, Berlin, 1925

[3] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom Fünften Grade, Leipzig, 1884

[4] V. V. Prasolov, Yu. P. Solov'ev, Elliptic Function and Algebraic Equations, Faktorial, M., 1997 (in Russian)

[5] V. A. Nikiforovskiy, From History of Algebra of XVI–XVII Centuries, Nauka, M., 1979 (in Russian)

[6] A. N. Zemlyakov, “Theses on Algebra. Part 2: Fileds, Polynomials, Equations”, Mat. Obraz., 2001, no. 1, 8–37 (in Russian)

[7] L. Ya. Okunev, “Polynomial Ring and Filed of Rational Functions”, Entsiklopediya Elementarnoy Matematiki, v. 2, Algebra, Gos. Izd. Tekhn.-Teor. Lit., M.–L., 1951 (in Russian)

[8] A. G. Kurosh, Algebraic Equations of Arbitrary Degree, Nauka, M., 1975 (in Russian)

[9] V. M. Bulatov, New Way to Find Roots of Equations of $3^\text{rd}$ Degree, Zapsibizdat, Novosibirsk, 1965 (in Russian)

[10] A. K. Sushkevich, Basis of High Algebra, Gos. Izd. Tekhn.-Teor. Lit., M.–L., 1932 (in Russian)

[11] I. N. Bronshtein, K. A. Semendyaev, Handbook of Mathematics, Gos. Izd. Fiz.-Mat. Lit., M., 1959 (in Russian)