Non-classical boundary conditions for quintic spline
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 85-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, there is a research of influence of nonclassiacal boundary conditions to approximation accuracy for interpolation of smooth function by quintic spline of defect $1$ on uniform mesh. There was asymptotic analysis (assuming of mesh’s step fineness) of boundary conditions. Various boundary conditions are compared.
Mots-clés : interpolation
Keywords: approximation, quintic spline, boundary conditions.
@article{VNGU_2015_15_4_a8,
     author = {S. S. Primakov},
     title = {Non-classical boundary conditions for quintic spline},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {85--103},
     year = {2015},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a8/}
}
TY  - JOUR
AU  - S. S. Primakov
TI  - Non-classical boundary conditions for quintic spline
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 85
EP  - 103
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a8/
LA  - ru
ID  - VNGU_2015_15_4_a8
ER  - 
%0 Journal Article
%A S. S. Primakov
%T Non-classical boundary conditions for quintic spline
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 85-103
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a8/
%G ru
%F VNGU_2015_15_4_a8
S. S. Primakov. Non-classical boundary conditions for quintic spline. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 85-103. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a8/

[1] J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York–London, 1967 | MR | MR | Zbl

[2] B. S. Kindalev, “Asymptotic formulas for a spline of the fifth degree and their application”, Vychisl. Sist., 87, 1981, 18–24 (in Russian) | Zbl

[3] N. P. Korneychuk, Splines in Approximation Theory, Nauka, M., 1984 (in Russian) | MR

[4] S. S. Primakov, “Asymptotic analysis of boundary conditions for quintic splines”, Sib. Adv. Math., 22:4 (2012), 275–286 | DOI | MR | Zbl

[5] Behforooz G. H., Papamichael N., “End Conditions for Interpolatory Quintic Splines”, IMA J. Numer. Anal., 1 (1981), 81–93 | DOI | MR | Zbl

[6] Behforooz G., “Another Approach to The Quintic Spline”, Appl. Math. Lett., 1:4 (1988), 335–338 | DOI | MR | Zbl

[7] Rana S. S., Choudhary P. R. S., “Convergence of Deficient Quintic Spline Interpolation”, J. Int. Acad. Phys. Sci., 14:2 (2010), 159–167 | MR | Zbl

[8] Bejancu A., Johnson M. J., Said H., “Finite Difference End Conditions and Semi-Cardinal Interpolation with Quintic B-Splines”, Appl. Math. Comput., 237 (2014), 318–329 | MR | Zbl

[9] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Methods of Spline-Functions, Nauka, M., 1980 (in Russian) | MR

[10] P. U. Kaliev, “On obtaining the exact estimation errors for interpolation of functions by the fifth degree splines of the defect 1, on a uniform network”, Vychisl. Sist., 115, 1986, 26–40 (in Russian) | Zbl

[11] Fyfe D. I., “Linear Dependence Relations Connecting Equal Interval N-th Degree Splines and Their Derivatives”, J. Inst. Math. Appl., 7 (1971), 398–406 | DOI | MR | Zbl

[12] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978 | MR | MR | Zbl

[13] I.Ṡ. Berezin, N. P. Zhidkov, Computing Methods, v. I, Pergamon Press, Oxford, 1965 | Zbl

[14] Runge C., “Über Empirische Funktionen und die Interpolation zwischen Äquidistanten Ordinaten”, Zeitschrift für Mathematik und Physik, 46 (1901), 224–243 | Zbl

[15] C. Lanczos, Applied Analysis, Prentice Hall, Englewood Cliffs, 1956 | MR