On asymptotic stability of solutions to delay difference equations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 50-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of systems of difference equations with constant coefficients and variable delay. We study asymptotic stability of the zero solution and establish estimates characterizing decay rate of solutions at infinity.
Keywords: delay difference equations, asymptotic stability of solutions, Lyapunov–Krasovskii functionals.
@article{VNGU_2015_15_4_a5,
     author = {G. V. Demidenko and D. Sh. Baldanov},
     title = {On asymptotic stability of solutions to delay difference equations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {50--62},
     year = {2015},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a5/}
}
TY  - JOUR
AU  - G. V. Demidenko
AU  - D. Sh. Baldanov
TI  - On asymptotic stability of solutions to delay difference equations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 50
EP  - 62
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a5/
LA  - ru
ID  - VNGU_2015_15_4_a5
ER  - 
%0 Journal Article
%A G. V. Demidenko
%A D. Sh. Baldanov
%T On asymptotic stability of solutions to delay difference equations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 50-62
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a5/
%G ru
%F VNGU_2015_15_4_a5
G. V. Demidenko; D. Sh. Baldanov. On asymptotic stability of solutions to delay difference equations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a5/

[1] P. I. Koval', “Reducible systems of difference equations and stability of their solutions”, Uspekhi Mat. Nauk, 12:6 (1957), 143–146 (in Russian) | MR

[2] Hahn W., “Über die Adwendung der Methode von Ljapunov auf Differenzengleichungen”, Math. Ann., 136:1 (1958), 430–441 | DOI | MR | Zbl

[3] Jury E. I., “A Simplified Stability Criterion for Linear Discrete Systems”, ERL Report Series, 1961, no. 60, 373 | MR

[4] A. Halanay, D. Wexler, Qualitative Theory of Impulse Systems, Mir, M., 1971 (in Russian)

[5] Elaydi S. N., An Introduction to Difference Equations, Springer Verlag, Inc., New York, 1999 | MR | Zbl

[6] Györi I., Pituk M., “Asymptotic Formulae for the Solutions of a Linear Delay Difference Equation”, J. Math. Anal. Appl., 195:2 (1995), 376–392 | DOI | MR | Zbl

[7] Erbe L. H., Xia H., Yu J. S., “Global Stability for a Linear Nonautonomous Delay Difference Equation”, J. Diff. Eq. Appl., 1:2 (1995), 151–161 | DOI | MR | Zbl

[8] Yu J. S., “Asymptotic Stability of a Linear Difference Equation with Variable Delay”, Comp. Math. Appl., 36:10–12 (1998), 203–210 | MR | Zbl

[9] Agarwal R. P., Kim Y. H., Sen S. K., “Advanced Discrete Halanay-Type Inequalities: Stability of Difference Equations”, J. Inequal. Appl., 2009, 535849 | DOI | MR | Zbl

[10] Berezansky L., Braverman E., “Exponential Stability of Difference Equations with Several Delays: Recursive Approach”, Adv. Diff. Equat., 2009, 104310 | MR | Zbl

[11] D. Ya. Khusainov, A. V. Shatyrko, “Research of absolute stability of the difference system with delay via the second method of Lyapunov”, J. Vych. Prikl. Mat., 2010, no. 4(103), 118–126 (in Russian) | MR

[12] A. Yu. Kulikov, “Stability of a linear nonautonomous difference equation with bounded delays”, Rus. Math. (Izvestiya VUZ. Matematika), 54:11 (2010), 18–26 | DOI | MR | Zbl

[13] A. Yu. Kulikov, V. V. Malygina, “Stability of a linear difference equation and estimation of its fundamental solution”, Rus. Math. (Izvestiya VUZ. Matematika), 55:12 (2011), 23–33 | DOI | MR | Zbl

[14] G. V. Demidenko, I. I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 20–28 (in Russian)

[15] Yu. L. Daletskiy, M. G. Kreyn, Stability of Solutions Of Differential Equations In A Banach Space, Amer. Math. Soc., Providence, 1974 | MR

[16] G. V. Demidenko, Matrix Equations, Novosibirsk State Univ., Novosibirsk, 2009

[17] S. K. Godunov, Modern Aspects of Linear Algebra, Amer. Math. Soc., Providence, 1998 | MR | Zbl