@article{VNGU_2015_15_4_a4,
author = {N. A. Daurtseva},
title = {Cayley structures on $S^6$ as a twistor bundle sections},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {43--49},
year = {2015},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a4/}
}
N. A. Daurtseva. Cayley structures on $S^6$ as a twistor bundle sections. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 43-49. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a4/
[1] Gray A., “Weak Holonomy Groups”, Math. Z., 125 (1971), 290–300 | DOI | MR
[2] Gray A., Hervella L. M., “The Sixteen Classes of Almost Hermitian Manifolds and their Linear Invariants”, Ann. Mat. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl
[3] Nagy P.-A., “Nearly Kähler Geometry and Riemannian Foliations”, Asian J. Math., 2002, no. 3, 481–504 | DOI | MR | Zbl
[4] Butruille J.-B., “Classification des Variétés Approximativement Kähleriennes Homogénes”, Ann. Global Anal. Geom., 27 (2005), 201–225 | DOI | MR | Zbl
[5] Verbitsky M., “An Intrinsic Volume Functional on Almost Complex 6-Manifolds and Nearly Kähler Geometry”, Pacific J. of Math., 236:5 (2008), 323–344 | DOI | MR
[6] Calaby E., Gluck H., What Are the Best Almost-Complex Structures on the 6-Sphere?, Proc. of. Symp. in P. Math., 54 (1993), 99–106 | DOI | MR
[7] Hitchin N., “Stable Forms and Special Metrics // Global Differential Geometry: The Mathematical Legacy of Alfred Gray”, Contemp. Math., 288, 2001, 70–89 | DOI | MR | Zbl
[8] Reyes Carrión R., Some Special Geometries Defined by Lie Groups, Ph. D. Thesis, University of Oxford, Trinity, 1993 | Zbl