Cayley structures on $S^6$ as a twistor bundle sections
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 43-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nearly Kähler structures on the $6$-sphere, as a twistor bundle sections are researched. We show tat for any point of the twistor bundle there exists a $1$-parametric family of sections which give nearly Kähler structures on the round $6$-sphere and pass through the point. Some properties of those sections are found.
Keywords: Cayley structures, nearly Kähler structure, twistor bundle.
@article{VNGU_2015_15_4_a4,
     author = {N. A. Daurtseva},
     title = {Cayley structures on $S^6$ as a twistor bundle sections},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {43--49},
     year = {2015},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a4/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - Cayley structures on $S^6$ as a twistor bundle sections
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 43
EP  - 49
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a4/
LA  - ru
ID  - VNGU_2015_15_4_a4
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T Cayley structures on $S^6$ as a twistor bundle sections
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 43-49
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a4/
%G ru
%F VNGU_2015_15_4_a4
N. A. Daurtseva. Cayley structures on $S^6$ as a twistor bundle sections. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 43-49. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a4/

[1] Gray A., “Weak Holonomy Groups”, Math. Z., 125 (1971), 290–300 | DOI | MR

[2] Gray A., Hervella L. M., “The Sixteen Classes of Almost Hermitian Manifolds and their Linear Invariants”, Ann. Mat. Pura Appl., 123 (1980), 35–58 | DOI | MR | Zbl

[3] Nagy P.-A., “Nearly Kähler Geometry and Riemannian Foliations”, Asian J. Math., 2002, no. 3, 481–504 | DOI | MR | Zbl

[4] Butruille J.-B., “Classification des Variétés Approximativement Kähleriennes Homogénes”, Ann. Global Anal. Geom., 27 (2005), 201–225 | DOI | MR | Zbl

[5] Verbitsky M., “An Intrinsic Volume Functional on Almost Complex 6-Manifolds and Nearly Kähler Geometry”, Pacific J. of Math., 236:5 (2008), 323–344 | DOI | MR

[6] Calaby E., Gluck H., What Are the Best Almost-Complex Structures on the 6-Sphere?, Proc. of. Symp. in P. Math., 54 (1993), 99–106 | DOI | MR

[7] Hitchin N., “Stable Forms and Special Metrics // Global Differential Geometry: The Mathematical Legacy of Alfred Gray”, Contemp. Math., 288, 2001, 70–89 | DOI | MR | Zbl

[8] Reyes Carrión R., Some Special Geometries Defined by Lie Groups, Ph. D. Thesis, University of Oxford, Trinity, 1993 | Zbl