@article{VNGU_2015_15_4_a3,
author = {Kh. M. Gamzaev},
title = {Numerical solution of the combined inverse problem for generalized {Burgers} equation},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {35--42},
year = {2015},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - Numerical solution of the combined inverse problem for generalized Burgers equation JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 35 EP - 42 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/ LA - ru ID - VNGU_2015_15_4_a3 ER -
Kh. M. Gamzaev. Numerical solution of the combined inverse problem for generalized Burgers equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/
[1] Burgers I. M., “A Mathematical Model Illustrating the Theory of Turbulence”, Adv. of Mechanics, 1948, no. 1, 171–199 | DOI | MR
[2] G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, 1974 | MR | MR | Zbl
[3] M. B. Vinogradova, O. V. Rudenko, A. P. Sukhorukov, The Wave Theory, Nauka, M., 1979 (in Russian) | MR
[4] O. V. Rudenko, “On the possibility of generating high-power hypersound with the aid of laser radiation”, JETP Letters, 20:7 (1974), 445–448 (in Russian)
[5] A. A. Karabutov, E. A. Lapshin, O. V. Rudenko, “On the interaction of light with sound in a manifestation of acoustic nonlinearity”, JETP, 71:1(7) (1976), 111–121 (in Russian)
[6] Pasmanter R. A., “Stability and Backlund Transform of the Forced Burgers Equation”, J. Math. Phys., 29 (1986), 2744–2746 | MR | Zbl
[7] Sachdev P. L., Nonlinear Diffusive Waves, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[8] S. V. Petrovskiy, “Exact solutions of Burgers equation with source”, J. Math. Phys., 69:8 (1999), 10–14 (in Russian) | MR
[9] A. G. Kudryavtsev, O. A. Sapozhnikov, “Exact solutions of the inhomogeneous Burgers equation with using of Darboux transformation”, Acoustic J., 57:3 (2011), 313–322 (in Russian)
[10] P. J. Roache, Computational Fluid Dynamics, Hermosa Publs., Albuquerque, 1976 | MR
[11] Yu. Ya. Belov, K. V. Korshun, “On the problem of identifying the source of the Burgers equation”, J. Sib. Fed. Univ., 5:4 (2012), 497–506 (in Russian)
[12] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, The Extreme Methods to Solve Ill-Posed Problems, Nauka, M., 1988 (in Russian) | MR
[13] A. A. Samarskiy, P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, LKI, M., 2009 (in Russian)
[14] Gamzaev Kh. M., “Modeling Nonstationary Nonlinear–Viscous Liquid Flows Through a Pipeline”, J. of Engineering Physics and Thermophysics, 2015, no. 2, 480–485 | DOI