Numerical solution of the combined inverse problem for generalized Burgers equation
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 35-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We considered inverse problem for restoration of source and the boundary regime for generalized Burgers equation with additional nonlocal condition. This problem belongs to class of combined inverse problems. This problem can be transformed via integrating into inverse boundary problem with local conditions. We built a difference analogue of the differential problem in the form of an implicit difference scheme and non iterative computational algorithm for solution of obtained system of the difference equations. We conducted numerical experiments on the basis of the proposed method.
Keywords: generalized Burgers equation, combined inverse problem, restoration of source and the boundary regime, unlocal condition, difference problem.
@article{VNGU_2015_15_4_a3,
     author = {Kh. M. Gamzaev},
     title = {Numerical solution of the combined inverse problem for generalized {Burgers} equation},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {35--42},
     year = {2015},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/}
}
TY  - JOUR
AU  - Kh. M. Gamzaev
TI  - Numerical solution of the combined inverse problem for generalized Burgers equation
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 35
EP  - 42
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/
LA  - ru
ID  - VNGU_2015_15_4_a3
ER  - 
%0 Journal Article
%A Kh. M. Gamzaev
%T Numerical solution of the combined inverse problem for generalized Burgers equation
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 35-42
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/
%G ru
%F VNGU_2015_15_4_a3
Kh. M. Gamzaev. Numerical solution of the combined inverse problem for generalized Burgers equation. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a3/

[1] Burgers I. M., “A Mathematical Model Illustrating the Theory of Turbulence”, Adv. of Mechanics, 1948, no. 1, 171–199 | DOI | MR

[2] G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, 1974 | MR | MR | Zbl

[3] M. B. Vinogradova, O. V. Rudenko, A. P. Sukhorukov, The Wave Theory, Nauka, M., 1979 (in Russian) | MR

[4] O. V. Rudenko, “On the possibility of generating high-power hypersound with the aid of laser radiation”, JETP Letters, 20:7 (1974), 445–448 (in Russian)

[5] A. A. Karabutov, E. A. Lapshin, O. V. Rudenko, “On the interaction of light with sound in a manifestation of acoustic nonlinearity”, JETP, 71:1(7) (1976), 111–121 (in Russian)

[6] Pasmanter R. A., “Stability and Backlund Transform of the Forced Burgers Equation”, J. Math. Phys., 29 (1986), 2744–2746 | MR | Zbl

[7] Sachdev P. L., Nonlinear Diffusive Waves, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[8] S. V. Petrovskiy, “Exact solutions of Burgers equation with source”, J. Math. Phys., 69:8 (1999), 10–14 (in Russian) | MR

[9] A. G. Kudryavtsev, O. A. Sapozhnikov, “Exact solutions of the inhomogeneous Burgers equation with using of Darboux transformation”, Acoustic J., 57:3 (2011), 313–322 (in Russian)

[10] P. J. Roache, Computational Fluid Dynamics, Hermosa Publs., Albuquerque, 1976 | MR

[11] Yu. Ya. Belov, K. V. Korshun, “On the problem of identifying the source of the Burgers equation”, J. Sib. Fed. Univ., 5:4 (2012), 497–506 (in Russian)

[12] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, The Extreme Methods to Solve Ill-Posed Problems, Nauka, M., 1988 (in Russian) | MR

[13] A. A. Samarskiy, P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, LKI, M., 2009 (in Russian)

[14] Gamzaev Kh. M., “Modeling Nonstationary Nonlinear–Viscous Liquid Flows Through a Pipeline”, J. of Engineering Physics and Thermophysics, 2015, no. 2, 480–485 | DOI