The flow of incompressible polymeric fluid between two coaxial cilinders
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 24-34
Cet article a éte moissonné depuis la source Math-Net.Ru
We posted the problem for ordinary differential equation which describes the speed profile of polymeric fluid. We also discussed the results of numerical experiments for the different values of problem parameters.
Keywords:
incompressible polymeric fluid, boundary-value problem, predictor-corrector method.
@article{VNGU_2015_15_4_a2,
author = {A. M. Blokhin and R. E. Semenko},
title = {The flow of incompressible polymeric fluid between two coaxial cilinders},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {24--34},
year = {2015},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a2/}
}
TY - JOUR AU - A. M. Blokhin AU - R. E. Semenko TI - The flow of incompressible polymeric fluid between two coaxial cilinders JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 24 EP - 34 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a2/ LA - ru ID - VNGU_2015_15_4_a2 ER -
A. M. Blokhin; R. E. Semenko. The flow of incompressible polymeric fluid between two coaxial cilinders. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 24-34. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a2/
[1] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Introduction into Mesoscopic Theory of Fluidity of Polymeric Systems, AltGPA, Barnaul, 2012 (in Russian)
[2] A. M. Blokhin, A. S. Rudometova, “Stationary solutions for equations describing non-isothermal electroconvection of incompressible viscoelastic polymeric fluid”, Sib. J. of Ind. Mat., 18:1(61) (2015), 3–13 (in Russian)
[3] N. N. Yanenko, The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | MR | Zbl