The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we want shown unique solvability local boundary problems in cylindrical domain for multi-dimensional hyperbolic equations with wave operators, which are the generalized Dirichlet and Poincare problems. We take also criteria unique regular solution.
Keywords: correctness, local boundary problem, cylindrical domain, wave equations.
@article{VNGU_2015_15_4_a0,
     author = {S. A. Aldashev},
     title = {The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--11},
     year = {2015},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 3
EP  - 11
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a0/
LA  - ru
ID  - VNGU_2015_15_4_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 3-11
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a0/
%G ru
%F VNGU_2015_15_4_a0
S. A. Aldashev. The well-posed of the local boundary value problem in cylindrical domain for multisize hyperbolic equations with wave operator. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/VNGU_2015_15_4_a0/

[1] Hadamard J., “Sur les Problemesaux Derives Partielles et leur Signification Physique”, Princeton University Bulletin, 13 (1902), 49–52 | MR

[2] A. V. Bitsadze, Equations of the Mixed Type, Pergamon Press, London–Paris, 1964 | MR | Zbl

[3] A. M. Nakhushev, Problems with Displacement for a Partial Differential Equation, Nauka, M., 2006 (in Russian)

[4] Bourgin D. G., Duffin R., “The Dirichlet Problem for the Virbrating String Equation”, Bull. Amer. Math. Soc., 45 (1939), 851–858 | DOI | MR

[5] Fox D. W., Pucci C., “The Dirichlet Problem for the Wave Equation”, Ann. Mat. Pura Appl. (IV), 46 (1958), 155–182 | DOI | MR | Zbl

[6] A. M. Nakhushev, “Uniqueness criterion for the Dirichlet problem for an equation of mixed type in a cylindrical domain”, Differ. Uravn., 6:1 (1970), 190–191 (in Russian) | MR | Zbl

[7] Dunninger D. R., Zachmanoglou E. C., “The Condition for Uniqueness of the Dirichlet Problem for Hyperbolical Equations in Cylindrical Domains”, J. Math. Mech., 18 (1969), 763–766 | MR | Zbl

[8] S. A. Aldashev, “The correctness of the Dirichlet problem in the cylindric domain for for a multi-dimensional hyperbolical equations with wave operator”, Dokl. Adyg. Acad. of Sci., 13:1 (2011), 21–29 (in Russian) | MR

[9] S. A. Aldashev, “The correctness of the Poincare problem in the cylindric domain for for a multi-dimensional hyperbolical equations with wave operator”, Zhurn. Vych. i Prikl. Mat., 2013, no. 4(14), 68–76 (in Russian)

[10] A. M. Nakhushev, Equations of the Mathematical Biology, Vyssh. Shkola, M., 1995 (in Russian)

[11] S. G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, International Series of Monographs in Pure and Applied Mathematics, 83, Pergamon Press, Oxford–London–Edinburgh–New York–Paris–Frankfurt, 1965 | MR

[12] E. Kamke, Handbook of Ordinary Differential Equations, Nauka, M., 1965 (in Russian)

[13] H. Bateman, A. Erdely, Higher Transcendental Functions, v. 2, MC Graw-Hill, New York–London, 1953 | MR

[14] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, 1999

[15] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, 1990 | MR | MR

[16] V. I. Smirnov, Course of Higher Mathematics, v. 4, Nauka, M., 1981 (in Russian)

[17] S. A. Aldashev, “The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 48–55 (in Russian) | DOI