@article{VNGU_2015_15_3_a8,
author = {E. V. Shatalin},
title = {Research of regression models of dependence between dollar and euro with help of empirical bridge},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {91--97},
year = {2015},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/}
}
TY - JOUR AU - E. V. Shatalin TI - Research of regression models of dependence between dollar and euro with help of empirical bridge JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 91 EP - 97 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/ LA - ru ID - VNGU_2015_15_3_a8 ER -
E. V. Shatalin. Research of regression models of dependence between dollar and euro with help of empirical bridge. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 91-97. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/
[1] Pacelli V., Bevilacqua V., Azzollini M., “An Artificial Neural Network Model to Forecast Exchange Rates”, J. of Intelligent Learning Systems and Applications, 3:2 (2011), 57–69 | DOI
[2] Bildirici M., Alp E. A., Ersin O., “TAR-Cointegration Neural Network Model: An Empirical Analysis of Exchange Rates and Stock Returns”, Expert Systems with Applications, 37:1 (2010), 2–11 | DOI
[3] Ramzan S., Ramzan S., Zahid F. M., “Modeling and Forecasting Exchange Rate Dynamics in Pakistan Using Arch Family of Models”, Electron. J. App. Stat. Anal., 5:1 (2012), 15–29 | MR
[4] Pacelli V., “Forecasting Exchange Rates: a Comparative Analysis”, Int. J. of Business and Social Sci., 3:10 (2012), 145–156
[5] Abdalla S. Z. S., “Modelling Exchange Rate Volatility Using Garch Models: Empirical Evidence from Arab Countries”, Int. J. of Economics and Finance, 4:3 (2012), 216–229 | DOI
[6] Nwankwo S. C., “Autoregressive Integrated Moving Average (ARIMA) Model for Exchange Rate (Naira to Dollar)”, Academic J. of Interdisciplinary Studies, 3:4 (2014), 429–433
[7] MacNeill I. B., “Limit Processes for Sequences of Partial Sums of Regression Residual”, Ann. Prob., 6:4 (1978), 695–698 | DOI | MR | Zbl
[8] Bischoff W., “A Functional Central Limit Theorem for Regression Models”, Ann. of Stat., 26:4 (1998), 1398–1410 | DOI | MR | Zbl
[9] Kovalevskii A. P., Shatalin E. V., “An Asymptotic of Sums of Residuals of One-Parameter Regression Model Against Order Statistics”, Theory Probab. Appl., 59:3 (2015), 375–387 | DOI | DOI | MR | Zbl
[10] Gastwirth J. L., “A General Definition of the Lorenz Curve”, Econometrica, 39 (1971), 1037–1039 | DOI | Zbl
[11] P. Billingsley, Convergence of Probability Measures, Wiley, Chichester, 1999 | MR | MR | Zbl
[12] David H. A., “Concomitants of Order Statistics”, Bull. Internat. Statist. Inst., 45 (1973), 295–300 | MR
[13] Davydov Yu., Egorov V., “Functional Limit Theorems for Induced Order Statistics”, Math. Methods. of Statist., 9:3 (2000), 297–313 | MR | Zbl
[14] L. N. Bol'shev, N. V. Smirnov, Tables of Mathematical Statistics, Nauka, M., 1983 (in Russian) | MR