Research of regression models of dependence between dollar and euro with help of empirical bridge
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 91-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We studied two 1-parameter regression models of dependence between dollar and euro. Comparison of models is established via empirical bridge construction.
Keywords: linear regression, empirical bridge.
@article{VNGU_2015_15_3_a8,
     author = {E. V. Shatalin},
     title = {Research of regression models of dependence between dollar and euro with help of empirical bridge},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {91--97},
     year = {2015},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/}
}
TY  - JOUR
AU  - E. V. Shatalin
TI  - Research of regression models of dependence between dollar and euro with help of empirical bridge
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 91
EP  - 97
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/
LA  - ru
ID  - VNGU_2015_15_3_a8
ER  - 
%0 Journal Article
%A E. V. Shatalin
%T Research of regression models of dependence between dollar and euro with help of empirical bridge
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 91-97
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/
%G ru
%F VNGU_2015_15_3_a8
E. V. Shatalin. Research of regression models of dependence between dollar and euro with help of empirical bridge. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 91-97. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a8/

[1] Pacelli V., Bevilacqua V., Azzollini M., “An Artificial Neural Network Model to Forecast Exchange Rates”, J. of Intelligent Learning Systems and Applications, 3:2 (2011), 57–69 | DOI

[2] Bildirici M., Alp E. A., Ersin O., “TAR-Cointegration Neural Network Model: An Empirical Analysis of Exchange Rates and Stock Returns”, Expert Systems with Applications, 37:1 (2010), 2–11 | DOI

[3] Ramzan S., Ramzan S., Zahid F. M., “Modeling and Forecasting Exchange Rate Dynamics in Pakistan Using Arch Family of Models”, Electron. J. App. Stat. Anal., 5:1 (2012), 15–29 | MR

[4] Pacelli V., “Forecasting Exchange Rates: a Comparative Analysis”, Int. J. of Business and Social Sci., 3:10 (2012), 145–156

[5] Abdalla S. Z. S., “Modelling Exchange Rate Volatility Using Garch Models: Empirical Evidence from Arab Countries”, Int. J. of Economics and Finance, 4:3 (2012), 216–229 | DOI

[6] Nwankwo S. C., “Autoregressive Integrated Moving Average (ARIMA) Model for Exchange Rate (Naira to Dollar)”, Academic J. of Interdisciplinary Studies, 3:4 (2014), 429–433

[7] MacNeill I. B., “Limit Processes for Sequences of Partial Sums of Regression Residual”, Ann. Prob., 6:4 (1978), 695–698 | DOI | MR | Zbl

[8] Bischoff W., “A Functional Central Limit Theorem for Regression Models”, Ann. of Stat., 26:4 (1998), 1398–1410 | DOI | MR | Zbl

[9] Kovalevskii A. P., Shatalin E. V., “An Asymptotic of Sums of Residuals of One-Parameter Regression Model Against Order Statistics”, Theory Probab. Appl., 59:3 (2015), 375–387 | DOI | DOI | MR | Zbl

[10] Gastwirth J. L., “A General Definition of the Lorenz Curve”, Econometrica, 39 (1971), 1037–1039 | DOI | Zbl

[11] P. Billingsley, Convergence of Probability Measures, Wiley, Chichester, 1999 | MR | MR | Zbl

[12] David H. A., “Concomitants of Order Statistics”, Bull. Internat. Statist. Inst., 45 (1973), 295–300 | MR

[13] Davydov Yu., Egorov V., “Functional Limit Theorems for Induced Order Statistics”, Math. Methods. of Statist., 9:3 (2000), 297–313 | MR | Zbl

[14] L. N. Bol'shev, N. V. Smirnov, Tables of Mathematical Statistics, Nauka, M., 1983 (in Russian) | MR