Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 78-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider the problem of equilibrium of an elastic plate, which on part of the boundary in contact with a rigid obstacle. On this part of the boundary defined boundary conditions like inequalities describing the lack of penetration points of the plate and a rigid body. Equilibrium problem is set in the form of variational inequalities. Solvability of the problem is established and is proved the equivalence of the two formulations: variational and differential. By applying the method of fictitious areas proved that solutions of the family of auxiliary problems defined in the wider area, converge to the solution of the initial contact problem. In addition, each auxiliary problem in the extended area simulates the equilibrium plate with a crack.
Keywords: Kirchhoff–Lyava’s plate, Signorini boundary conditions, fictitious area, non-penetration condition, crack.
@article{VNGU_2015_15_3_a7,
     author = {N. A. Nikolaeva},
     title = {Method of fictitious areas in a task about balance of a plate of {Kirchhoff{\textendash}Lyava}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {78--90},
     year = {2015},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/}
}
TY  - JOUR
AU  - N. A. Nikolaeva
TI  - Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 78
EP  - 90
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/
LA  - ru
ID  - VNGU_2015_15_3_a7
ER  - 
%0 Journal Article
%A N. A. Nikolaeva
%T Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 78-90
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/
%G ru
%F VNGU_2015_15_3_a7
N. A. Nikolaeva. Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 78-90. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/

[1] C. Baiocchi, A. Capelo, Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, Wiley, New York, 1984 | MR | MR | Zbl

[2] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin–New York, 1976 | MR | MR | Zbl

[3] G. Fichera, “Existence Theorems in Elasticity”, Handbuch der Physik, v. VIa/2, Springer-Verlag, Berlin, 1972

[4] A. S. Kravchuk, “The variational method in contact problems. The present state of the problem and trends in its development”, Appl. Math. Mech., 73:3 (2009), 351–357 | DOI | MR | Zbl

[5] I. I. Argatov, J. Sokolowski, “Asymptotics of the energy functional in the Signorini problem under small singular perturbation of the domain”, Comput. Math. Math. Phys., 43:5 (2003), 710–724 | MR | Zbl

[6] R. V. Namm, A. S. Tkachenko, “Solution of a semicoercive Signorini problem by a method of iterative proximal regularization of a modified Lagrange functional”, Russian Mathematics (Izvestiya VUZ. Matematika), 54:4 (2010), 31–39 | DOI | MR | MR | Zbl

[7] E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Comput. Math. Math. Phys., 54:7 (2014), 1190–1200 | DOI | DOI | MR | Zbl

[8] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–N. Y., 2000

[9] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)

[10] A. M. Khludnev, “The method of smooth domains in the equilibrium problem for a plate with a crack”, Sib. Mat. J., 43:6 (2002), 1124–1134 | DOI | MR | Zbl

[11] T. S. Popova, “The problem about contact of two viscoelastic plates”, Mat. Notes YaGU, 12:2 (2005), 61–92 (in Russian)

[12] N. V. Neustroeva, “Contact problem for elastic bodies of different dimensions”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:4 (2008), 60–75 (in Russian) | MR | Zbl

[13] V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhof–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl

[14] E. M. Rudoy, “The shape derivative of the energy integral in elasticity theory for bodies with rigid inclusions and cracks”, J. Math. Sci., 198:5 (2014), 608–620 | DOI | MR | MR

[15] P. N. Vabishchevich, Method of Fictitious Areas in Problems of Mathematical Physics, MSU publishing house, M., 1991 (in Russian)

[16] V. D. Stepanov, A. M. Khludnev, “The method of fictitious domains in the Signorini problem”, Sib. Mat. J., 44:6 (2003), 1061–1074 | DOI | MR | Zbl

[17] G. V. Alekseev, A. M. Khludnev, “Crack in elastic body crossing the external boundary at zero angle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 15–29 (in Russian) | MR

[18] L.-E. Andersson, A. M. Khludnev, “On crack crossing an external boundary. Fictitious domain method and invariant integrals”, Sib. J. Ind. Mat., 11:3 (2008), 15–29 (in Russian)

[19] Khludnev A., “Thin Rigid Inclusions with Delaminations in Elastic Plates”, Eur. J. Mech. A Solids, 32 (2012), 69–75 | DOI | MR | Zbl

[20] N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR | Zbl

[21] T. S. Popova, “Method of fictitious areas in Sinyorini's task for viscoelastic bodies”, Mat. Notes YaGU, 13:1 (2006), 105–120 (in Russian)