@article{VNGU_2015_15_3_a7,
author = {N. A. Nikolaeva},
title = {Method of fictitious areas in a task about balance of a plate of {Kirchhoff{\textendash}Lyava}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {78--90},
year = {2015},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/}
}
TY - JOUR AU - N. A. Nikolaeva TI - Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 78 EP - 90 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/ LA - ru ID - VNGU_2015_15_3_a7 ER -
N. A. Nikolaeva. Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 78-90. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a7/
[1] C. Baiocchi, A. Capelo, Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, Wiley, New York, 1984 | MR | MR | Zbl
[2] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin–New York, 1976 | MR | MR | Zbl
[3] G. Fichera, “Existence Theorems in Elasticity”, Handbuch der Physik, v. VIa/2, Springer-Verlag, Berlin, 1972
[4] A. S. Kravchuk, “The variational method in contact problems. The present state of the problem and trends in its development”, Appl. Math. Mech., 73:3 (2009), 351–357 | DOI | MR | Zbl
[5] I. I. Argatov, J. Sokolowski, “Asymptotics of the energy functional in the Signorini problem under small singular perturbation of the domain”, Comput. Math. Math. Phys., 43:5 (2003), 710–724 | MR | Zbl
[6] R. V. Namm, A. S. Tkachenko, “Solution of a semicoercive Signorini problem by a method of iterative proximal regularization of a modified Lagrange functional”, Russian Mathematics (Izvestiya VUZ. Matematika), 54:4 (2010), 31–39 | DOI | MR | MR | Zbl
[7] E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Comput. Math. Math. Phys., 54:7 (2014), 1190–1200 | DOI | DOI | MR | Zbl
[8] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–N. Y., 2000
[9] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010 (in Russian)
[10] A. M. Khludnev, “The method of smooth domains in the equilibrium problem for a plate with a crack”, Sib. Mat. J., 43:6 (2002), 1124–1134 | DOI | MR | Zbl
[11] T. S. Popova, “The problem about contact of two viscoelastic plates”, Mat. Notes YaGU, 12:2 (2005), 61–92 (in Russian)
[12] N. V. Neustroeva, “Contact problem for elastic bodies of different dimensions”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:4 (2008), 60–75 (in Russian) | MR | Zbl
[13] V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhof–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl
[14] E. M. Rudoy, “The shape derivative of the energy integral in elasticity theory for bodies with rigid inclusions and cracks”, J. Math. Sci., 198:5 (2014), 608–620 | DOI | MR | MR
[15] P. N. Vabishchevich, Method of Fictitious Areas in Problems of Mathematical Physics, MSU publishing house, M., 1991 (in Russian)
[16] V. D. Stepanov, A. M. Khludnev, “The method of fictitious domains in the Signorini problem”, Sib. Mat. J., 44:6 (2003), 1061–1074 | DOI | MR | Zbl
[17] G. V. Alekseev, A. M. Khludnev, “Crack in elastic body crossing the external boundary at zero angle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 15–29 (in Russian) | MR
[18] L.-E. Andersson, A. M. Khludnev, “On crack crossing an external boundary. Fictitious domain method and invariant integrals”, Sib. J. Ind. Mat., 11:3 (2008), 15–29 (in Russian)
[19] Khludnev A., “Thin Rigid Inclusions with Delaminations in Elastic Plates”, Eur. J. Mech. A Solids, 32 (2012), 69–75 | DOI | MR | Zbl
[20] N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR | Zbl
[21] T. S. Popova, “Method of fictitious areas in Sinyorini's task for viscoelastic bodies”, Mat. Notes YaGU, 13:1 (2006), 105–120 (in Russian)