On identities of vector spaces embedded in finite associative algebras
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 69-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study identities of vector spaces embedded in finite associative linear algebras. We prove that a $L$-variety generated by the space of matrices of second order over a finite field has a finite number of $L$-subvarieties. We constructed an example of a finite two-dimensional vector space which has no finite basis of identities. As a corollary, we constructed an example of a finite four-dimensional linear algebra without finite basis of identities. In particular, the authors constructed an example of a ring consisting of 16 elements which has no finite basis of identities.
Mots-clés : multiplicative vector space
Keywords: identity of vector space, $L$-variety, basis of identities, nonfinitely based space, nonfinitely based algebra.
@article{VNGU_2015_15_3_a6,
     author = {I. M. Isaev and A. V. Kislitsin},
     title = {On identities of vector spaces embedded in finite associative algebras},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {69--77},
     year = {2015},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/}
}
TY  - JOUR
AU  - I. M. Isaev
AU  - A. V. Kislitsin
TI  - On identities of vector spaces embedded in finite associative algebras
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 69
EP  - 77
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/
LA  - ru
ID  - VNGU_2015_15_3_a6
ER  - 
%0 Journal Article
%A I. M. Isaev
%A A. V. Kislitsin
%T On identities of vector spaces embedded in finite associative algebras
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 69-77
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/
%G ru
%F VNGU_2015_15_3_a6
I. M. Isaev; A. V. Kislitsin. On identities of vector spaces embedded in finite associative algebras. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 69-77. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/

[1] Yu. P. Razmyslov, Identities of Algebras and Their Representations, AMS, Providence, 1994 | MR | Zbl

[2] Yu. N. Mal'tsev, E. N. Kuz'min, “A basis for the identities of the algebra of second-order matrices over a finite field”, Algebra Logic, 17:1 (1978), 18–21 | DOI | MR | Zbl

[3] A. V. Kislitsin, Identities of vector spaces embedded in linear algebras and examples of finite-dimensional algebras having no finite basis of identities, Thes. Cand. Math.-Phys. Degree, Novosibirsk, 2014 (in Russian)

[4] I. M. Isaev, A. V. Kislitsin, “On identities of spaces of linear transformations of small dimensions”, International Conference on Ring Theory dedicated to the 90th anniversary of Anatolii Illarionovich Shirshov, IM SO RAN, Novosibirsk, 2011, 44–45 (in Russian)

[5] I. M. Isaev, A. V. Kislitsin, “Identities in vector spaces and examples of finite-dimensional linear algebras having no finite basis of identities”, Algebra Logic, 52:4 (2013), 290–307 | DOI | MR | Zbl

[6] I. M. Isaev, A. V. Kislitsin, “On identities of vector spaces of small dimensions”, The Collection of the Scientific Articles the International School-Seminar “Lomonosov's Readings in Altai”, Altai State Pedagogical Academy, Barnaul, 2012, 216–218 (in Russian) | Zbl

[7] I. V. L'vov, “Finite-dimensional algebras with infinite bases of identities”, Sib. Math. J., 19:1 (1978), 63–69 | DOI | MR | Zbl | Zbl

[8] I. M. Isaev, “Essentially infinitely based varieties of algebras”, Sib. Math. J., 30:6 (1989), 892–894 | DOI | MR | Zbl