On identities of vector spaces embedded in finite associative algebras
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 69-77
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study identities of vector spaces embedded in finite associative linear algebras. We prove that a $L$-variety generated by the space of matrices of second order over a finite field has a finite number of $L$-subvarieties. We constructed an example of a finite two-dimensional vector space which has no finite basis of identities. As a corollary, we constructed an example of a finite four-dimensional linear algebra without finite basis of identities. In particular, the authors constructed an example of a ring consisting of 16 elements which has no finite basis of identities.
Mots-clés :
multiplicative vector space
Keywords: identity of vector space, $L$-variety, basis of identities, nonfinitely based space, nonfinitely based algebra.
Keywords: identity of vector space, $L$-variety, basis of identities, nonfinitely based space, nonfinitely based algebra.
@article{VNGU_2015_15_3_a6,
author = {I. M. Isaev and A. V. Kislitsin},
title = {On identities of vector spaces embedded in finite associative algebras},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {69--77},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/}
}
TY - JOUR AU - I. M. Isaev AU - A. V. Kislitsin TI - On identities of vector spaces embedded in finite associative algebras JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 69 EP - 77 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/ LA - ru ID - VNGU_2015_15_3_a6 ER -
I. M. Isaev; A. V. Kislitsin. On identities of vector spaces embedded in finite associative algebras. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 69-77. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a6/