Change of variables operators in weighted Sobolev spaces on Carnot groups
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 61-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study mappings inducing a bounded composition operator on weighted Sobolev spaces on Carnot groups. An analytical description of these mappings is given in terms of integrability of weighted distortion function. For the special cases we prove that mapping which generates a bounded composition operator is partially absolutely continuous on almost all horizontal lines.
Keywords: composition operators, weighted Sobolev spaces on Carnot groups.
@article{VNGU_2015_15_3_a5,
     author = {N. A. Evseev},
     title = {Change of variables operators in weighted {Sobolev} spaces on {Carnot} groups},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {61--68},
     year = {2015},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a5/}
}
TY  - JOUR
AU  - N. A. Evseev
TI  - Change of variables operators in weighted Sobolev spaces on Carnot groups
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 61
EP  - 68
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a5/
LA  - ru
ID  - VNGU_2015_15_3_a5
ER  - 
%0 Journal Article
%A N. A. Evseev
%T Change of variables operators in weighted Sobolev spaces on Carnot groups
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 61-68
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a5/
%G ru
%F VNGU_2015_15_3_a5
N. A. Evseev. Change of variables operators in weighted Sobolev spaces on Carnot groups. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 61-68. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a5/

[1] Ukhlov A., Vodopyanov S. K., “Mappings Associated with Weighted Sobolev Spaces”, Complex Analysis and Dynamical Systems III, Contemporary Mathematics, 455, AMS, Providence, 2008, 369–382 | DOI | MR | Zbl

[2] Vodop'yanov S. K., Ukhlov A. D., “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces, I”, Siberian Advances in Mathematics, 14:4 (2004), 78–125 | MR | Zbl

[3] Ukhlov A., “Composition Operators in Weighted Sobolev Spaces on Carnot Groups”, Acta Mathematica Hungarica, 133:1–2 (2011), 103–127 | DOI | MR | Zbl

[4] S. K. Vodopyanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russ. Math., 46:10 (2002), 9–31 | MR | Zbl

[5] Vodop'yanov S. K., “Composition Operators on Sobolev spaces”, Complex Analysis and Dynamical Systems II, Contemporary Mathematics, 382, AMS, Ramat Gan, 2005, 327–342 | MR

[6] S. K. Vodopyanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings”, Sib. Math. J., 55:5 (2014), 817–848 | DOI | MR | Zbl

[7] S. K. Vodopyanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and metric properties of mappings”, Dokl. Akad. Nauk, Ross. Akad. Nauk, 464:2 (2015), 131 (in Russian) | DOI

[8] S. K. Vodopyanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Sib. Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl

[9] S. K. Vodopyanov, “Regularity of mappings inverse to Sobolev mappings”, Sb. Math., 203:10 (2012), 1383–1410 | DOI | DOI | MR | Zbl

[10] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg–N. Y., 2007 | MR | Zbl

[11] Folland G. B., Stein E. M., Hardy Spaces on Homogeneous Group, Princeton University Press, New Jersey, 1982 | MR

[12] Vodopyanov S. K., “$\mathcal P$-Differentiability on Carnot Groups in Different Topologies and Related Topics”, Proc. on Analysis and Geometry (2000), eds. V. I. Burenkov, S. K. Vodopyanov, Sobolev Institute Press, Novosibirsk, 2000, 603–670 | MR | Zbl

[13] Kilpeläinen T., “Weighted Sobolev spaces and capacity”, Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica, 19 (1994), 95–113 | MR | Zbl

[14] Lu G., “Weighted Poincaré and Sobolev Inequality for Vector Fields Satisfying Hörmander's Condition and Applications”, Revista Mat. Iberoamericana, 8:3 (1992), 367–439 | MR | Zbl

[15] S. K. Vodopyanov, “$L_p$-theory of potentials and quasi-conformal mappings on homogeneous groups”, Tr. Inst. Mat., 14, 1989, 45–89 (in Russian)

[16] Vodop'yanov S. K., “Composition Operators of Sobolev Spaces”, Modern Problems of Function Theory and its Applications, The Book of Abstracts of Saratov Winter School (Saratov, Jan. 2002), Saratov State University, Saratov, 2002, 42–43

[17] Evseev N. A., “Composition operators on weighted Sobolev spaces on a Carnot group”, Sib. Mat. Zh., 56:6 (2015) (in Russian)