The index set of linear orderings that are autostable relative to strong constructivizations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 51-60
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a computable ordinal $\alpha$ is autostable relative to strong constructivizations if and only if $\alpha\omega^{\omega+1}$. We calculate, in a precise way, the complexity of the index set for linear orderings that are autostable relative to strong constructivizations.
Keywords:
computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, linear ordering, computable ordinal, index set.
@article{VNGU_2015_15_3_a4,
author = {S. S. Goncharov and N. A. Bazhenov and M. I. Marchuk},
title = {The index set of linear orderings that are autostable relative to strong constructivizations},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {51--60},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/}
}
TY - JOUR AU - S. S. Goncharov AU - N. A. Bazhenov AU - M. I. Marchuk TI - The index set of linear orderings that are autostable relative to strong constructivizations JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 51 EP - 60 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/ LA - ru ID - VNGU_2015_15_3_a4 ER -
%0 Journal Article %A S. S. Goncharov %A N. A. Bazhenov %A M. I. Marchuk %T The index set of linear orderings that are autostable relative to strong constructivizations %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2015 %P 51-60 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/ %G ru %F VNGU_2015_15_3_a4
S. S. Goncharov; N. A. Bazhenov; M. I. Marchuk. The index set of linear orderings that are autostable relative to strong constructivizations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 51-60. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/