The index set of linear orderings that are autostable relative to strong constructivizations
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 51-60

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a computable ordinal $\alpha$ is autostable relative to strong constructivizations if and only if $\alpha\omega^{\omega+1}$. We calculate, in a precise way, the complexity of the index set for linear orderings that are autostable relative to strong constructivizations.
Keywords: computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, linear ordering, computable ordinal, index set.
@article{VNGU_2015_15_3_a4,
     author = {S. S. Goncharov and N. A. Bazhenov and M. I. Marchuk},
     title = {The index set of linear orderings that are autostable relative to strong constructivizations},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - N. A. Bazhenov
AU  - M. I. Marchuk
TI  - The index set of linear orderings that are autostable relative to strong constructivizations
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 51
EP  - 60
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/
LA  - ru
ID  - VNGU_2015_15_3_a4
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A N. A. Bazhenov
%A M. I. Marchuk
%T The index set of linear orderings that are autostable relative to strong constructivizations
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 51-60
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/
%G ru
%F VNGU_2015_15_3_a4
S. S. Goncharov; N. A. Bazhenov; M. I. Marchuk. The index set of linear orderings that are autostable relative to strong constructivizations. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 51-60. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a4/