On potential counterexamples to the problem of zero divisors
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 30-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

E. Rips constructed a serie of groups such that their group rings have zero divisors. These groups are possible counterexamples to Kaplansky problem on zero divisors. The main problem is to find inside this serie a group without torsion. In this paper are studied simplest groups of this serie. It is given their full classification, described their structure and proven that all of them have 2-torsion.
Keywords: problem on zero divisors, group without torsion, group ring.
@article{VNGU_2015_15_3_a3,
     author = {V. G. Bardakov and M. S. Petukhova},
     title = {On potential counterexamples to the problem of zero divisors},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {30--50},
     year = {2015},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a3/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - M. S. Petukhova
TI  - On potential counterexamples to the problem of zero divisors
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 30
EP  - 50
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a3/
LA  - ru
ID  - VNGU_2015_15_3_a3
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A M. S. Petukhova
%T On potential counterexamples to the problem of zero divisors
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 30-50
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a3/
%G ru
%F VNGU_2015_15_3_a3
V. G. Bardakov; M. S. Petukhova. On potential counterexamples to the problem of zero divisors. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 30-50. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a3/

[1] V. D. Mazurov, E. I. Khukhro (eds.), The Kourovka Notebook. Unsolved Problems in Group Theory, $17^\text{th}$ ed., IM RAS, SD, Novosibirsk, 2010 | MR

[2] Higman G., “The Units of Group Rings”, Proc. London Math. Soc., 46 (1940), 231–248 | DOI | MR

[3] Brown K. A., “On Zero Divisors in Group Rings”, Bull. London Math. Soc., 8:3 (1976), 251–256 | DOI | MR | Zbl

[4] Farkas D. R., Snider R. L., “K0 and Noetherian Group Rings”, J. Algebra, 42:1 (1976), 192–198 | DOI | MR | Zbl

[5] Formanek E., “The Zero Divisor Question for Supersolable Groups”, Bull. Austral. Math. Soc., 9 (1973), 67–71 | DOI | MR

[6] Linnel P. A., “Zero Divisors and Idempotents in Group Rings”, Math. Proc. Cambridge Philos. Soc., 81:3 (1977), 365–368 | DOI | MR | Zbl

[7] Kropholler P. H., Linnell P. A., Moody J. A., “Applications of a New $K$-Theoretic Theorem to Soluble Group Rings”, Proc. Amer. Math. Soc., 104:3 (1988), 675–684 | MR | Zbl

[8] Levin J., “A Note on Zero Divisors in Group Rings”, Proc. Amer. Math. Soc., 31:2 (1972), 357–359 | DOI | MR

[9] Lewin J., Lewin T., “The Group Algebra of a Torsion-Free One-Relator Group Can Be Embedded in a Field”, Bull. Amer. Math. Soc., 81:5 (1975), 947–949 | DOI | MR | Zbl

[10] Lichtman A., “The Zero Divisor Problem for a Class of Torsion-Free Groups”, Proc. Amer. Math. Soc., 82:2 (1981), 188–190 | DOI | MR | Zbl

[11] Ivanov S., “An Asphericity Conjecture and Kaplansky Problem on Zero Divisors”, J. Algebra, 216 (1999), 13–19 | DOI | MR | Zbl

[12] Leary I., “Asphericity and Zero Divisors in Group Algebras”, J. Algebra, 227 (2000), 362–364 | DOI | MR | Zbl

[13] Schweitzer P., “On Zero Divisors with Small Support in Group Rings of Torsion-Free Groups”, J. Group Theory, 16:5 (2013), 667–693 | MR | Zbl

[14] M. I. Kargapolov, Yu. I. Merzlyakov, Fundamentals of Group Theory, Nauka, M., 1996 (in Russian) | MR

[15] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 2001 | MR | MR | Zbl