@article{VNGU_2015_15_3_a0,
author = {I. A. Alexandrova and J. Mike\v{s} and S. E. Stepanov and I. I. Tsyganok},
title = {Theorems of {Liuville} types in theory mappings of the complete {Riemannian} manifolds},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {3--10},
year = {2015},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/}
}
TY - JOUR AU - I. A. Alexandrova AU - J. Mikeš AU - S. E. Stepanov AU - I. I. Tsyganok TI - Theorems of Liuville types in theory mappings of the complete Riemannian manifolds JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 3 EP - 10 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/ LA - ru ID - VNGU_2015_15_3_a0 ER -
%0 Journal Article %A I. A. Alexandrova %A J. Mikeš %A S. E. Stepanov %A I. I. Tsyganok %T Theorems of Liuville types in theory mappings of the complete Riemannian manifolds %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2015 %P 3-10 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/ %G ru %F VNGU_2015_15_3_a0
I. A. Alexandrova; J. Mikeš; S. E. Stepanov; I. I. Tsyganok. Theorems of Liuville types in theory mappings of the complete Riemannian manifolds. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/
[1] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1926 | MR | Zbl
[2] N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces, Nauka, M., 1979 (in Russian) | MR
[3] Mikeš J., Vanžurová A., Hiterleitner I., Geodesic Mappings and Some Generalizations, Palacký University Press, Olomouc, 2009 | MR | Zbl
[4] J. Mikeš, “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78:3 (1996), 311–333 | DOI | MR | Zbl
[5] J. Mikeš, “Holomorphically projective mappings and their generalizations”, J. Math. Sci., 89:3 (1998), 1334–1353 | DOI | MR | MR | Zbl
[6] Hiterleitner I., “On Holomorphically Projective Mappings of e-Kähler Manifolds”, Arch. Math. Brno, 48 (2012), 333–338 | DOI | MR
[7] Matveev V. S., “Geodesically Equivalent Metric in General Relativity”, J. Geom. Phys., 62:3 (2012), 675–691 | DOI | MR | Zbl
[8] Mikeš J., Stepanova E. S., Tsyganok I. I., “A Geodesic Mapping and its Field of Symmetric Linear Endomorphisms”, Differ. Geom. Appl., 35 (2014), 44–49 | DOI | MR | Zbl
[9] E. N. Sinyukova, “Geodesic mappings of certain special Riemannian spaces”, Math. Notes, 30 (1982), 946–949 | DOI | MR | Zbl
[10] N. S. Sinyukov, E. N. Sinyukova, “Holomorphically projective mappings of special Kähler spaces”, Math. Notes, 36 (1984), 706–709 | DOI | MR | Zbl
[11] Stepanov S. E., “On the Global Theory of Some Classes of Mappings”, Ann. Global Anal. Geom., 13:3 (1995), 239–249 | DOI | MR | Zbl
[12] Hiterleitner I., “Geodesic Mappings on Compact Riemannian Manifolds with Conditions on Sectional Curvature”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 125–130 | DOI | MR
[13] Ni L., “Vanishing Theorems on Complete Kähler Manifolds and Their Applications”, J. Diff. Geom., 50 (1998), 89–122 | MR
[14] S. E. Stepanov, “Vanishing theorems in affine, Riemannian, and Lorentz geometries”, J. Math. Sci., 141:1 (2007), 929–964 | DOI | MR | Zbl
[15] Vilms J., “Totally Geodesic Maps”, J. Differ. Geom., 4 (1970), 73–79 | MR | Zbl
[16] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl
[17] Yau S.-T., “Some Function-Theoretic Properties of Complete Riemannian Manifold and Their Applications to Geometry”, Indiana Univ. Math. J., 25 (1976), 659–670 | DOI | MR | Zbl
[18] Jorgenson J., Walling L. (eds.), The Ubiquitous Heat Kernel, AMS, Providence, 2006 | MR | Zbl
[19] Ichihara K., “Curvature, Geodesics and the Brownian Motion on a Riemannian Manifold. I: Recurrence Properties”, Nagoya Math. J., 87 (1982), 101–114 | MR | Zbl
[20] Ichihara K., “Curvature, Geodesics and the Brownian Motion on a Riemannian Manifold. II: Explosion properties”, Nagoya Math. J., 87 (1982), 115–125 | MR | Zbl
[21] I. A. Aleksandrova, “The spectral method in asymptotic diffusion problems with drift”, Math. Notes, 59:5 (1996), 554–556 | DOI | DOI | MR | Zbl
[22] A. A. Grigor'yan, “Stochastically complete manifolds and summable harmonic functions”, Math. USSR, Izv., 33:2 (1989), 425–432 | DOI | MR | Zbl | Zbl
[23] Grigor'yan A. A., “Heat Kernel and Analysis on Manifolds”, The Ubiquitous Heat Kernel, AMS Special Session (Boulder, CO, USA, October 2–4, 2003), AMS/IP Studies in Adv. Math., AMS, Providence, 2009, 93–191 | MR
[24] Hsu P., “Heat Semigroup on a Complete Riemannian Manifold”, Ann. Probab., 17:3 (1989), 1248–1254 | DOI | MR | Zbl
[25] Yau S.-T., “On the Heat Kernel of Complete Riemannian Manifold”, J. Math. Pures Appl., 9:57 (1978), 191–201 | MR | Zbl
[26] Azencott R., “Behavior of Diffusion Semi-Groups at Infinity”, Bull. Soc. Math. Fr., 102 (1974), 193–240 | MR | Zbl
[27] Grigor'yan A., “Analytic and Geometric Background of Recurrence and Non-Explosion of the Brownian Motion on Riemannian Manifolds”, Bull. Am. Math. Soc., New Ser., 36:2 (1999), 135–249 | DOI | MR | Zbl
[28] Cheng S. Y., Yau S.-T., “Differential Equations on Riemannian Manifolds and their Geometrical Applications”, Commun. Pure Appl. Math., 28 (1975), 333–354 | DOI | MR | Zbl
[29] Yano K., “Sur la Correspondence Projective Entre Deux Espaces Pseudo-Hermitens”, C. R. Acad. Sci., Paris, Sér. A, 239 (1954), 1346–1348 (in French) | MR | Zbl
[30] Otsuki T., Tashiro Y., “On Curves in Kaehlerian Spaces”, Math. J. Okayama Univ., 4 (1954), 57–78 | MR | Zbl
[31] Tashiro Y., “On a Holomorphically Projective Correspondence in an Almost Complex Space”, Math. J. Okayama Univ., 6 (1957), 147–152 | MR | Zbl