Theorems of Liuville types in theory mappings of the complete Riemannian manifolds
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we prove some vanishing theorems for projective and holomorphically projective diffeomorphisms of Riemannian and Kähler complete manifolds. We will use the well-known Liouville type theorems on harmonic, subharmonic and superharmonic functions on complete Riemannian manifolds for proofs of these theorems.
Keywords: complete Riemannian and Kähler manifolds, projective and holomorphically projective diffeomorphisms.
@article{VNGU_2015_15_3_a0,
     author = {I. A. Alexandrova and J. Mike\v{s} and S. E. Stepanov and I. I. Tsyganok},
     title = {Theorems of {Liuville} types in theory mappings of the complete {Riemannian} manifolds},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--10},
     year = {2015},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/}
}
TY  - JOUR
AU  - I. A. Alexandrova
AU  - J. Mikeš
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
TI  - Theorems of Liuville types in theory mappings of the complete Riemannian manifolds
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 3
EP  - 10
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/
LA  - ru
ID  - VNGU_2015_15_3_a0
ER  - 
%0 Journal Article
%A I. A. Alexandrova
%A J. Mikeš
%A S. E. Stepanov
%A I. I. Tsyganok
%T Theorems of Liuville types in theory mappings of the complete Riemannian manifolds
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 3-10
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/
%G ru
%F VNGU_2015_15_3_a0
I. A. Alexandrova; J. Mikeš; S. E. Stepanov; I. I. Tsyganok. Theorems of Liuville types in theory mappings of the complete Riemannian manifolds. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/VNGU_2015_15_3_a0/

[1] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1926 | MR | Zbl

[2] N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces, Nauka, M., 1979 (in Russian) | MR

[3] Mikeš J., Vanžurová A., Hiterleitner I., Geodesic Mappings and Some Generalizations, Palacký University Press, Olomouc, 2009 | MR | Zbl

[4] J. Mikeš, “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78:3 (1996), 311–333 | DOI | MR | Zbl

[5] J. Mikeš, “Holomorphically projective mappings and their generalizations”, J. Math. Sci., 89:3 (1998), 1334–1353 | DOI | MR | MR | Zbl

[6] Hiterleitner I., “On Holomorphically Projective Mappings of e-Kähler Manifolds”, Arch. Math. Brno, 48 (2012), 333–338 | DOI | MR

[7] Matveev V. S., “Geodesically Equivalent Metric in General Relativity”, J. Geom. Phys., 62:3 (2012), 675–691 | DOI | MR | Zbl

[8] Mikeš J., Stepanova E. S., Tsyganok I. I., “A Geodesic Mapping and its Field of Symmetric Linear Endomorphisms”, Differ. Geom. Appl., 35 (2014), 44–49 | DOI | MR | Zbl

[9] E. N. Sinyukova, “Geodesic mappings of certain special Riemannian spaces”, Math. Notes, 30 (1982), 946–949 | DOI | MR | Zbl

[10] N. S. Sinyukov, E. N. Sinyukova, “Holomorphically projective mappings of special Kähler spaces”, Math. Notes, 36 (1984), 706–709 | DOI | MR | Zbl

[11] Stepanov S. E., “On the Global Theory of Some Classes of Mappings”, Ann. Global Anal. Geom., 13:3 (1995), 239–249 | DOI | MR | Zbl

[12] Hiterleitner I., “Geodesic Mappings on Compact Riemannian Manifolds with Conditions on Sectional Curvature”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 125–130 | DOI | MR

[13] Ni L., “Vanishing Theorems on Complete Kähler Manifolds and Their Applications”, J. Diff. Geom., 50 (1998), 89–122 | MR

[14] S. E. Stepanov, “Vanishing theorems in affine, Riemannian, and Lorentz geometries”, J. Math. Sci., 141:1 (2007), 929–964 | DOI | MR | Zbl

[15] Vilms J., “Totally Geodesic Maps”, J. Differ. Geom., 4 (1970), 73–79 | MR | Zbl

[16] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. I, Interscience Publishers, New York–London, 1963 | MR | Zbl

[17] Yau S.-T., “Some Function-Theoretic Properties of Complete Riemannian Manifold and Their Applications to Geometry”, Indiana Univ. Math. J., 25 (1976), 659–670 | DOI | MR | Zbl

[18] Jorgenson J., Walling L. (eds.), The Ubiquitous Heat Kernel, AMS, Providence, 2006 | MR | Zbl

[19] Ichihara K., “Curvature, Geodesics and the Brownian Motion on a Riemannian Manifold. I: Recurrence Properties”, Nagoya Math. J., 87 (1982), 101–114 | MR | Zbl

[20] Ichihara K., “Curvature, Geodesics and the Brownian Motion on a Riemannian Manifold. II: Explosion properties”, Nagoya Math. J., 87 (1982), 115–125 | MR | Zbl

[21] I. A. Aleksandrova, “The spectral method in asymptotic diffusion problems with drift”, Math. Notes, 59:5 (1996), 554–556 | DOI | DOI | MR | Zbl

[22] A. A. Grigor'yan, “Stochastically complete manifolds and summable harmonic functions”, Math. USSR, Izv., 33:2 (1989), 425–432 | DOI | MR | Zbl | Zbl

[23] Grigor'yan A. A., “Heat Kernel and Analysis on Manifolds”, The Ubiquitous Heat Kernel, AMS Special Session (Boulder, CO, USA, October 2–4, 2003), AMS/IP Studies in Adv. Math., AMS, Providence, 2009, 93–191 | MR

[24] Hsu P., “Heat Semigroup on a Complete Riemannian Manifold”, Ann. Probab., 17:3 (1989), 1248–1254 | DOI | MR | Zbl

[25] Yau S.-T., “On the Heat Kernel of Complete Riemannian Manifold”, J. Math. Pures Appl., 9:57 (1978), 191–201 | MR | Zbl

[26] Azencott R., “Behavior of Diffusion Semi-Groups at Infinity”, Bull. Soc. Math. Fr., 102 (1974), 193–240 | MR | Zbl

[27] Grigor'yan A., “Analytic and Geometric Background of Recurrence and Non-Explosion of the Brownian Motion on Riemannian Manifolds”, Bull. Am. Math. Soc., New Ser., 36:2 (1999), 135–249 | DOI | MR | Zbl

[28] Cheng S. Y., Yau S.-T., “Differential Equations on Riemannian Manifolds and their Geometrical Applications”, Commun. Pure Appl. Math., 28 (1975), 333–354 | DOI | MR | Zbl

[29] Yano K., “Sur la Correspondence Projective Entre Deux Espaces Pseudo-Hermitens”, C. R. Acad. Sci., Paris, Sér. A, 239 (1954), 1346–1348 (in French) | MR | Zbl

[30] Otsuki T., Tashiro Y., “On Curves in Kaehlerian Spaces”, Math. J. Okayama Univ., 4 (1954), 57–78 | MR | Zbl

[31] Tashiro Y., “On a Holomorphically Projective Correspondence in an Almost Complex Space”, Math. J. Okayama Univ., 6 (1957), 147–152 | MR | Zbl