Optimal system of subalgebras for sum of two ideals $\mathfrak{aff}(\mathbb{R})\oplus \mathfrak{sl}(2,\mathbb{R})$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 90-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Optimal system of subalgebras for one algebra Lie is constructed. This algebra Lie is direct sum of algebra of affine transformations group $Aff(\mathbb{R})$ and algebra of projective transformations group $SL(2,\mathbb{R})$. Some invariant solutions for one nonlinear partial differential equation are found.
Keywords: symmetry group, Lie algebra
Mots-clés : optimal system of subalgebras, invariant solutions.
@article{VNGU_2015_15_2_a6,
     author = {A. V. Panov},
     title = {Optimal system of subalgebras for sum of two ideals $\mathfrak{aff}(\mathbb{R})\oplus \mathfrak{sl}(2,\mathbb{R})$},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a6/}
}
TY  - JOUR
AU  - A. V. Panov
TI  - Optimal system of subalgebras for sum of two ideals $\mathfrak{aff}(\mathbb{R})\oplus \mathfrak{sl}(2,\mathbb{R})$
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 90
EP  - 96
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a6/
LA  - ru
ID  - VNGU_2015_15_2_a6
ER  - 
%0 Journal Article
%A A. V. Panov
%T Optimal system of subalgebras for sum of two ideals $\mathfrak{aff}(\mathbb{R})\oplus \mathfrak{sl}(2,\mathbb{R})$
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 90-96
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a6/
%G ru
%F VNGU_2015_15_2_a6
A. V. Panov. Optimal system of subalgebras for sum of two ideals $\mathfrak{aff}(\mathbb{R})\oplus \mathfrak{sl}(2,\mathbb{R})$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 90-96. http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a6/