Generating elements for groups and Lie algebras of the form $F/[N,N]$
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 60-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be a free product of groups $A_i~(i\in I)$ and a free group $G$ and its normal subgroup $N$ has trivial intersection with each factor $A_i$. Subject to these conditions we will establish necessary and sufficient conditions for an element of the group $F/[N,N]$ belongs to the subgroup generated by a given finite set of elements of $F/[N,N]$ and necessary and sufficient conditions for a given set of elements of the group $F/[N,N]$ to generate it. Similar results are proved also for Lie algebras.
Keywords:
group ring, Lie algebra, universal enveloping algebra.
@article{VNGU_2015_15_2_a4,
author = {A. F. Krasnikov},
title = {Generating elements for groups and {Lie} algebras of the form $F/[N,N]$},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {60--71},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a4/}
}
TY - JOUR AU - A. F. Krasnikov TI - Generating elements for groups and Lie algebras of the form $F/[N,N]$ JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 60 EP - 71 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a4/ LA - ru ID - VNGU_2015_15_2_a4 ER -
A. F. Krasnikov. Generating elements for groups and Lie algebras of the form $F/[N,N]$. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 60-71. http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a4/