Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 51-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conjugate problem (generalized diffraction problem) is studied for third order equation $u_{t}-h(x)u_{xxx}+c(x,t)u=f(x,t)$, where coefficient $h(x)$ is positive and may have a discontinuity of the first kind at the point $x=0$. The existence and uniqueness of regular solutions are established.
Keywords: equations with multiple characteristics, discontinuous coefficients, conjugate problem, regular solutions, existence and uniqueness.
@article{VNGU_2015_15_2_a3,
     author = {A. I. Kozhanov and S. V. Potapova},
     title = {Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {51--59},
     year = {2015},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - S. V. Potapova
TI  - Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 51
EP  - 59
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/
LA  - ru
ID  - VNGU_2015_15_2_a3
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A S. V. Potapova
%T Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 51-59
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/
%G ru
%F VNGU_2015_15_2_a3
A. I. Kozhanov; S. V. Potapova. Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 51-59. http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/

[1] T. D. Dzhuraev, Boundary Value Problems for Equations of Mixed and Mixed-Compound Type, FAN, Tashkent, 1986 (in Russian) | MR

[2] V. V. Khablov, On Some Well-Posed Statements of Boundary-Value Problems for the Korteweg-de Vries Equation, Preprint, IM SO AN USSR, Novosibirsk, 1979 (in Russian)

[3] A. M. Abdrakhmanov, A. I. Kozhanov, “A problem with a nonlocal boundary condition for one class of odd-order equations”, Russ. Math., 51:5 (2007), 1–10 | DOI | MR | Zbl

[4] V. I. Antipin, “Solvability of a boundary value problem for a third order equation with changing time direction”, Mat. Zamet. YAGU, 18:1 (2011), 8–15 (in Russian) | MR

[5] V. I. Antipin, “Solvability of a boundary value problem for operator-differential equations of mixed type”, Sib. Math. J., 54:2 (2013), 185–195 | DOI | MR | Zbl

[6] O. A. Ladyzhenskaya, “On the solution of the general diffraction problem”, Dokl. Akad. Nauk SSSR, 96 (1954), 433–436 (in Russian) | MR | Zbl

[7] O. A. Oleinik, “Boundary-value problems for linear equations of elliptic parabolic type with discontinuous coefficients”, Izv. Akad., Nauk SSSR, Ser. Mat., 25 (1961), 3–20 (in Russian) | Zbl

[8] V. A. Il'in, “On the solvability of the Dirichlet and Neumann problems for a linear elliptic operator with discontinuous coefficients”, Sov. Math., Dokl., 2 (1961), 228–231 | MR | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, AMS, Providence, 1968 | MR | Zbl

[10] S. A. Tersenov, Introduction to the Theory of Parabolic Equations With Varying Time Direction, IM SO AN USSR, Novosibirsk, 1982 (in Russian) | MR

[11] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 (in Russian) | MR

[12] M. M. Smirnov, Equations of Mixed Type, Translations of Mathematical Monographs, 51, AMS, Providence, 1977 | MR | MR | Zbl

[13] E. I. Moiseev, Equations of Mixed Type with a Spectral Parameter, Izd. Moskovskogo Universiteta, M., 1988 (in Russian) | MR

[14] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. I: Uniqueness theorems”, Russ. Acad. Sci., Dokl., Math., 48:2 (1994), 410–414 | MR | Zbl

[15] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. II: Existence theorems”, Russ. Acad. Sci., Dokl., Math., 48:3 (1994), 433–437 | MR | Zbl

[16] K. B. Sabitov, “Dirichlet problem for mixed-type equations in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | DOI | MR | Zbl

[17] M. M. Khachev, The First Boundary Value Problem for Linear Equations of Mixed Type, Elbrus, Nalchik, 1998 (in Russian)

[18] O. I. Marichev, A. A. Kilbas, O. A. Repin, Boundary Value Problems for Partial Differential Equations with Discontinuous Coefficients, Izd. SGEU, Samara, 2008 (in Russian)

[19] O. A. Ladyzhenskaya, L. Stupjalis, “On equations of mixed-type”, Vestn. Leningr. Univ., Mat. Mekh. Astron., 20:19 (1965), 38–46 (in Russian)

[20] O. A. Ladyzhenskaya, L. Stupjalis, “Boundary value problems for equations of mixed-type”, Proc. Steklov Inst. Math., 125, 1971, 102–139 | MR | Zbl

[21] L. Stupjalis, “Boundary value problems for elliptic-hyperbolic equations”, Proc. Steklov Inst. Math., 125, 1973, 200–217 | MR | Zbl

[22] O. A. Andronova, “Spectral transmission problem with surface dissipation of energy”, Tr. Inst. Prikl. Mat. Mekh., 19 (2009), 10–22 (in Russian) | MR

[23] V. A. Il'in, P. V. Luferenko, “Mixed problems describing longitudinal oscillations of a rod consisting of two segments with different densities and different elasticities but equal impedances”, Dokl. Math., 80:2 (2009), 642–645 | DOI | MR | MR | Zbl

[24] V. A. Il'in, P. V. Luferenko, “Generalized solutions of initial-boundary value problems for a discontinuous wave equation in the case of equal impedances”, Dokl. Math., 80:3 (2009), 901–905 | DOI | MR | Zbl

[25] V. A. Il'in, “Optimization of the boundary displacement control of vibrations of a rod consisting of two dissimilar parts”, Differ. Equ., 47:7 (2011), 988–996 | DOI | MR | Zbl

[26] A. M. Rogozhnikov, “A mixed problem describing oscillations of a rod consisting of several segments with equal wave travel times”, Dokl. Math., 84:3 (2011), 830–832 | DOI | MR | Zbl

[27] D. N. Nikol'skij, “Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material”, Comput. Math. Math. Phys., 51:5 (2011), 855–861 | DOI | MR | Zbl

[28] A. A. Kuleshov, “Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities”, Dokl. Math., 85:1 (2012), 80–82 | DOI | MR | Zbl

[29] A. M. Rogozhnikov, “Study of a mixed problem describing the oscillations of a rod consisting of several segments with arbitrary lengths”, Dokl. Math., 85:3 (2012), 399–402 | DOI | MR | Zbl

[30] E. I. Moiseev, T. N. Likhomanenko, “A nonlocal boundary value problem for the Lavrent'ev–Bitsadze equation”, Dokl. Math., 86:2 (2012), 635–637 | DOI | MR | Zbl

[31] V. A. Trenogin, Functional Analysis, Textbook, Nauka, M., 1980 (in Russian) | MR

[32] S. Ya. Yakubov, Linear Operator-Differential Equations and Their Applications, Ehlm, Baku, 1985 (in Russian)