Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 51-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The conjugate problem (generalized diffraction problem) is studied for third order equation $u_{t}-h(x)u_{xxx}+c(x,t)u=f(x,t)$, where coefficient $h(x)$ is positive and may have a discontinuity of the first kind at the point $x=0$. The existence and uniqueness of regular solutions are established.
Keywords: equations with multiple characteristics, discontinuous coefficients, conjugate problem, regular solutions, existence and uniqueness.
@article{VNGU_2015_15_2_a3,
     author = {A. I. Kozhanov and S. V. Potapova},
     title = {Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - S. V. Potapova
TI  - Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 51
EP  - 59
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/
LA  - ru
ID  - VNGU_2015_15_2_a3
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A S. V. Potapova
%T Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 51-59
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/
%G ru
%F VNGU_2015_15_2_a3
A. I. Kozhanov; S. V. Potapova. Conjugate problem for third order equation with multiple characteristics and positive function on the highest derivative. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 51-59. http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a3/