Propagation of perturbations in a thin layer of a fluid with viscosity stratification
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 38-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a non-linear system of equations describing motion of a viscosity-layered fluid with a free surface in a long-wave approximation. In a semi-Lagrangian coordinate system we rewrite the governing equations in a integro-differencial form for which the necessary and sufficient hyperbolicity conditions are stated. An approximation for the integro-differential model in a form of finite-dimensional system of differential conservation laws with a right part is suggested. A modeling of propagation of nonlinear perturbations in a fluid with viscosity stratification was performed. In particular a problem about the evolution of a more viscous fluid column in a less viscous fluid during the passage of wave disturbances is considered.
Keywords: long waves, layered flows, integro-differential equations.
Mots-clés : viscous fluid
@article{VNGU_2015_15_2_a2,
     author = {P. V. Kovtunenko},
     title = {Propagation of perturbations in a thin layer of a fluid with viscosity stratification},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {38--50},
     year = {2015},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a2/}
}
TY  - JOUR
AU  - P. V. Kovtunenko
TI  - Propagation of perturbations in a thin layer of a fluid with viscosity stratification
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 38
EP  - 50
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a2/
LA  - ru
ID  - VNGU_2015_15_2_a2
ER  - 
%0 Journal Article
%A P. V. Kovtunenko
%T Propagation of perturbations in a thin layer of a fluid with viscosity stratification
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 38-50
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a2/
%G ru
%F VNGU_2015_15_2_a2
P. V. Kovtunenko. Propagation of perturbations in a thin layer of a fluid with viscosity stratification. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 38-50. http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a2/

[1] P. L. Kapitsa, “Wave flow of thin layers of a viscous fluid. I: Free flow”, Collected Papers of P. L. Kapitza, ed. D. ter Haar, Pergamon, London etc., 1965, 662–679

[2] Alekseenko S. V., Nakoryakov V. E., Pokusaev B. G., Wave Flow of Liquid Films, Begell House, N. Y., 1994

[3] Chang H. C., Demekhin E. A., Complex Wave Dynamics on Thin Films, Elsevier, 2002 | MR

[4] Govindarajan R., Sahu K. C., “Instabilities in Viscosity-Stratified Flow”, Annu. Rev. Fluid Mech., 46 (2014), 331–353 | DOI | MR | Zbl

[5] Lagree P.-Y., Staron L., Popinet S., “The Granular Column Collapse as a Continuum: Validity of a Two-Dimensional Navier–Stokes Model with a $\mu(I)$-Rheology”, J. Fluid Mech., 686 (2011), 378–408 | DOI | MR | Zbl

[6] Jop P., Forterre Y., Pouliquen O., “A Rheology for Dense Granular Flows”, Nature, 441 (2006), 727–730 | DOI

[7] Pouliquen O., Forterre Y., “A Non-Local Rheology for Dense Granular Flows”, Phil. Trans. R. Soc. A, 367:1909 (2009), 5091–5107 | DOI | Zbl

[8] Bagnold R. G., “Experiments of Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid Under Shear”, Proc. R. Soc. Lond. A, 255:1160 (1954), 49–63 | DOI

[9] V. M. Teshukov, “On hyperbolicity of long-wave equations”, Sov. Math., Dokl., 32 (1994), 469–473 | MR

[10] V. M. Teshukov, “Long waves in an eddying barotropic liquid”, J. Appl. Mech. Tech. Phys., 35:6 (1994), 17–26 | DOI | MR | Zbl

[11] I. I. Lipatov, V. M. Teshukov, “Nonlinear disturbances and weak discontinuities in a supersonic boundary layer”, Fluid Dyn., 39:1 (2004), 97–111 | DOI | MR | Zbl

[12] Chesnokov A. A., Kovtunenko P. V., “Weak Discontinuities in Solutions of Long-Wave Equations for Viscous Flow”, Stud. Appl. Math., 132 (2014), 50–64 | DOI | MR | Zbl

[13] Benney D. J., “Some Properties of Long Nonlinear Waves”, Stud. Appl. Math., 52 (1973), 45–50 | DOI | Zbl

[14] V. Yu. Liapidevskii, V. M. Teshukov, Mathematical Models of Propagation of Long Waves in a Non-Homogeneous Fluid, Izd. SO RAN, Novosibirsk, 2000 (in Russian)

[15] Funct. Anal. Appl., 14 (1980), 89–98 | DOI | DOI | MR | Zbl | Zbl

[16] Teshukov V., Russo G., Chesnokov A., “Analytical and Numerical Solutions of the Shallow Water Equations for 2-D Rotational Flows”, Math. Models Methods Appl. Sci., 14:10 (2004), 1451–1479 | DOI | MR | Zbl

[17] Nessyahu H., Tadmor E., “Non-Oscillatory Central Differencing Schemes for Hyperbolic Conservation Laws”, J. Comp. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl

[18] Russo G., “Central Schemes for Conservation Laws with Application to Shallow Water Equations”, Trends and Applications of Mathematics to Mechanics, eds. S. Rionero, G. Romano, Springer-Verlag Italia SRL, 2005, 225–246 | DOI

[19] Harten A., Engquist B., Osher S., Chakravarthy S., “Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl