Algebra-analytical ways of constructing solutions of differential equations and inverse problems
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is presented new algebra-analytical ways of constructing solutions of differential equations and inverse problems of mathematical physics. In particular, we are developing a new approach of application of ray method to inverse problems of mathematical physics.
Keywords: inverse problems, presentations of solutions and coefficients, ray method.
@article{VNGU_2015_15_2_a0,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {Algebra-analytical ways of constructing solutions of differential equations and inverse problems},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--21},
     year = {2015},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a0/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - Algebra-analytical ways of constructing solutions of differential equations and inverse problems
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 3
EP  - 21
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a0/
LA  - ru
ID  - VNGU_2015_15_2_a0
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T Algebra-analytical ways of constructing solutions of differential equations and inverse problems
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 3-21
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a0/
%G ru
%F VNGU_2015_15_2_a0
Yu. E. Anikonov; M. V. Neshchadim. Algebra-analytical ways of constructing solutions of differential equations and inverse problems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/VNGU_2015_15_2_a0/

[1] Anikonov Yu. E., Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht, 1997 | MR | Zbl

[2] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems of mathematical physics”, Sib. Elektron. Mat. Izv., 7 (2010), 11–61 (in Russian) | MR | Zbl

[3] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations, I”, J. Appl. Ind. Math., 5:4 (2011), 506–518 | DOI | MR | MR | Zbl

[4] Yu. E. Anikonov, M. V. Neshchadim, “On analytical methods in the theory of inverse problems for hyperbolic equations, II”, J. Appl. Ind. Math., 6:1 (2012), 6–11 | DOI | MR

[5] Yu. E. Anikonov, M. V. Neshchadim, “Analytical methods of the theory of inverse problems for parabolic equations”, J. Math. Sci., 195:6 (2013), 754–770 | DOI | MR

[6] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of hyperbolic and elliptical equations”, The final scientific report on the integration project of SB RAS and FEB RAS “Inverse and extremal problems of electromagnetic and acoustic sensing the World Ocean”, Sib. Elektron. Mat. Izv., 8 (2011), C.51–C.73 (in Russian) | MR

[7] Yu. E. Anikonov, M. V. Neshchadim, “On inverse problems for equations of mathematical physics with parameter”, Sib. Elektron. Mat. Izv., 9 (2012), 45–64 (in Russian) | MR

[8] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of second-order differential equations”, J. Appl. Ind. Math., 7:1 (2013), 15–21 | DOI | MR

[9] Yu. E. Anikonov, M. V. Neshchadim, “Representations for the solutions and coefficients of evolution equations”, J. Appl. Ind. Math., 7:3 (2013), 326–334 | DOI | MR | Zbl

[10] Anikonov Yu. E., “Representation of solutions to functional and evolution equations and identification problems”, Sib. Elektron. Mat. Izv., 10 (2013), 591–614 | MR | Zbl

[11] V. M. Babich, V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves, Nauka, M., 1972 (in Russian) | MR

[12] V. M. Babich, “The highest-dimensional WKB method or ray method. Its analogues and generalizations”, Partial differential equations V, Encycl. Math. Sci., 34, 1999, 91–131 | MR

[13] V. P. Maslov, Operational Methods, Mir, M., 1976 | MR | MR | Zbl

[14] G. Whitham, Linear and Nonlinear Waves, John Wiley Sons, New York, 1974 | MR | MR | Zbl

[15] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, Philadelphia, 1981 | MR | MR | Zbl

[16] A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, Singapore, 2001 | MR | Zbl

[17] R. M. Conte, M. Musette, The Painlevé handbook, Springer, Dordrecht, 2008

[18] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | MR | Zbl

[19] Yu. I. Kulakov, Theory of Physical Structures, Dominiko, M., 2004 (in Russian)

[20] G. G. Mikhailichenko, Group Symmetry of Physical Structures, BGPU, Barnaul, 2003 (in Russian)

[21] L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | MR

[22] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York–Berlin–Heidelberg–Tokyo, 1986 | MR | MR | Zbl

[23] O. V. Kaptsov, Methods of Integration of Partial Differential Equations, Fizmatlit, M., 2009 (in Russian)

[24] A. F. Sidorov, V. P. Shapeev, N. N. Yanenko, Method of Differential Relations and its Applications in Gas Dynamics, Nauka, Novosibirsk, 1984 (in Russian) | MR