The solution of algebraic equations by the method of Rutishauser–Nieporte
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 63-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Provides analytical expressions representing all the roots of a random algebraic equation of $n$-th degree through the coefficients of the initial equation. These formulas are based on the known ratio of Aitken and consist of two relations infinite Toeplitz determinants, the diagonal elements of which are the coefficients of algebraic equations. When calculating the relations of Toeplitz determinants algorithm is used, Rutishauser. For finding complex roots applies modification of the $r/\varphi$-algorithm developed for the summation of divergent continued fractions.
Mots-clés : algebraic equations
Keywords: infinite Toeplitz determinants, divergent continuous fractions, $r/\varphi$-algorithm.
@article{VNGU_2015_15_1_a5,
     author = {V. I. Shmoylov and M. V. Hisamutdinov and G. A. Kirichenko},
     title = {The solution of algebraic equations by the method of {Rutishauser{\textendash}Nieporte}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {63--79},
     year = {2015},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a5/}
}
TY  - JOUR
AU  - V. I. Shmoylov
AU  - M. V. Hisamutdinov
AU  - G. A. Kirichenko
TI  - The solution of algebraic equations by the method of Rutishauser–Nieporte
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 63
EP  - 79
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a5/
LA  - ru
ID  - VNGU_2015_15_1_a5
ER  - 
%0 Journal Article
%A V. I. Shmoylov
%A M. V. Hisamutdinov
%A G. A. Kirichenko
%T The solution of algebraic equations by the method of Rutishauser–Nieporte
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 63-79
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a5/
%G ru
%F VNGU_2015_15_1_a5
V. I. Shmoylov; M. V. Hisamutdinov; G. A. Kirichenko. The solution of algebraic equations by the method of Rutishauser–Nieporte. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 63-79. http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a5/

[1] G. P. Kutishchev, The Solution of Algebraic Equations of Arbitrary Degree: Theory, Methods, Algorithms, URRS, M., 2010 (in Russian)

[2] R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 1962 | MR | MR | Zbl

[3] V. I. Shmoilov, R. I. Tuchapskiy, Algebraic Equations. An Infinite Systems of Linear Algebraic Equations. Bibliographic Index, Merkator, Lviv, 2003 (in Russian)

[4] Mellin H. J., “Resolution de l'Equation Algebrique Generale a l'Aide de Function Gamma”, C.R. Acad. Sci. Paris ser. I Math., 172 (1921), 658–661 | Zbl

[5] E. N. Mikhalkin, “On solving general algebraic equations by integrals of elementary functions”, Sib. Mat. J., 47:2 (2006), 365–371 | MR | Zbl

[6] I. F. Korchagin, Algebraic Equations, Fizmatkniga, M., 2006 (in Russian)

[7] E. N. Mikhalkin, “Certain formulas for solutions to trinomial and tetranomial algebraic equations”, J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 230–238 (in Russian) | Zbl

[8] I. A. Antipova, E. N. Mikhalkin, “Analytic continuations of a general algebraic function by means of Puiseux series”, Proc. Steklov Inst. Math., 279, 2012, 3–13 | DOI | MR | Zbl

[9] V. I. Shmoilov, Diverging Systems of Linear Algebraic Equations, Izd. TTI YFU, Taganrog, 2010 (in Russian)

[10] V. I. Shmoilov, V. B. Kovalenko, “Some applications of the summation algorithm of divergent continued fractions”, Vestn. Yu. Nauch. C. RAN, 2012, no. 4(149), 3–13 (in Russian)

[11] V. I. Shmoilov, G. A. Kirichenko, “Determination of the values of divergent continuous fractions and series”, Izv. SFedU. Eng. Sci., 2013, no. 4(141), 210–222 (in Russian) | Zbl

[12] V. I. Shmoilov, Continued fractions and the $r/\varphi$-algorithm, Izd. TTI YFU, Taganrog, 2012 (in Russian) | Zbl

[13] V. I. Shmoilov, D. I. Savchenko, “About the summation algorithm of continued fractions”, Vestn. VGU, 2013, no. 2, 258–276 (in Russian)

[14] V. F. Guzik, V. I. Shmoilov, G. A. Kirichenko, “Continuous fractions and their application in computational mathematics”, Izv. SFedU. Eng. Sci., 2014, no. 1(150), 158–174 (in Russian)

[15] Aitken A. C., “On Bernulli's Numerical Solution of Algebraic Equations”, Proc. Roy. Soc. Edinburg, 46 (1927), 289–305 | DOI

[16] V. I. Shmoilov, Continued fractions, v. II, Diverging continued fractions, Merkator, Lviv, 2004 (in Russian)

[17] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Birkhäuser Verlag, Basel–Stuttgart, 1957 (in German) | MR | Zbl

[18] V. I. Shmoilov, Solution of algebraic equations by means of the $r/\varphi$-algorithm, Izd. TTI YFU, Taganrog, 2011 (in Russian)