Mots-clés : phase portraits, invariant surfaces.
@article{VNGU_2015_15_1_a3,
author = {V. P. Golubyatnikov and A. E. Kalenykh},
title = {On structure of phase portraits of some nonlinear dynamical systems},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {45--53},
year = {2015},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a3/}
}
TY - JOUR AU - V. P. Golubyatnikov AU - A. E. Kalenykh TI - On structure of phase portraits of some nonlinear dynamical systems JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2015 SP - 45 EP - 53 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a3/ LA - ru ID - VNGU_2015_15_1_a3 ER -
V. P. Golubyatnikov; A. E. Kalenykh. On structure of phase portraits of some nonlinear dynamical systems. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a3/
[1] A. A. Akinshin, T. A. Bukharina, V. P. Golubyatnikov, D. P. Furman, “Mathematical modeling of interaction of two cells in the proneural cluster of the wing imaginal disk of D. melanogaster”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:4 (2014), 3–11 (in Russian)
[2] V. G. Demidenko, “Reconstruction of the parameters of the homogenous linear models of the gene network dynamics”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008), 51–59 (in Russian) | MR | Zbl
[3] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, S. I. Fadeev, “Theory for gene network”, Computer Systems Biology, Izd. SO RAN, Novosibirsk, 2008, 395–480
[4] I. I. Matveeva, A. M. Popov, “On properties of solutions to a system modeling a multistage synthesis of a substance”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009), 86–94 (in Russian) | Zbl
[5] Murray J. D., Mathematical biology, v. I, An introduction, Springer-Verlag, N.Y., 2002 | MR | Zbl
[6] I. M. Peshkov, “Branching of solutions of gene networks mathematical models”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:3 (2007), 59–72 (in Russian) | MR
[7] E. P. Volokitin, S. A. Treskov, “The Andronov–Hopf bifurcation in a model of a hypothetical gene regulatory network”, J. Appl. Ind. Math., 1:1 (2007), 127–136 | DOI | MR
[8] Gaidov Yu. A., Golubyatnikov V. P., “On the Existence and Stability of Cycles in Gene Networks with Variable Feedbacks”, Contemporary Mathematics, 553, 2011, 61–74 | DOI | MR | Zbl
[9] Yu. A. Gaidov, V. P. Golubyatnikov, V. A. Likhoshvai, “On some nonlinear dynamical systems modelling asymmetric gene networks, II”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:1 (2010), 18–28 (in Russian) | Zbl
[10] Likhoshvai V. A., Fadeev S. I., Kogai V. V., Khlebodarova T. M., “On the Chaos in Gene Networks”, J. of Bioinformatics and Computational Biology, 11:1 (2013), 1340009, 25 pp. | DOI
[11] Gedeon T., “Cyclic Feedback Systems”, Memoirs AMS, 134, no. 637, 1998, 72 | DOI | MR
[12] Glass L., Pasternack J. S., “Stable Oscillations in Mathematical Models of Biological Control Systems”, J. of Math. Biology, 6 (1978), 207–223 | DOI | MR | Zbl
[13] V. P. Golubyatnikov, I. V. Golubyatnikov, “On the periodic trajectories of nonlinear dynamical systems of a special type”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 3–16 (in Russian)
[14] Wilds R., Glass L., “Contrasting Methods for Symbolic Analysis of Biological Regulatory Networks”, Phys. Rev., 80 (2009), 062902, 4 pp. | DOI
[15] Hastings S. P., Tyson J., Webster D., “Existence of Periodic Solutions for Negative Feedback Cellular Control Systems”, J. Diff. Equations, 25 (1977), 39–64 | DOI | MR | Zbl
[16] Hirsch M., “Systems of Differential Equations which are Competitive or Cooperative. I: Limit Sets”, SIAM J. Math. Anal., 13 (1982), 167–179 | DOI | MR | Zbl
[17] L. I. Kononenko, “Relaxations in singularly perturbed systems on the plane”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 45–50 (in Russian)
[18] E. A. Lashina, G. A. Chumakov, N. A. Chumakova, “Maximal families of periodic solutions in a kinetic model of a heterogeneous catalytic reaction”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:4 (2005), 42–59 (in Russian) | Zbl
[19] A. A. Akinshin, V. P. Golubyatnikov, I. V. Golubyatnikov, “On some many-dimensional models of the functioning of gene networks”, Sib. Zh. Ind. Mat., 16:1 (2013), 3–9 (in Russian)
[20] Yu. A. Gaidov, V. P. Golubyatnikov, “On some nonlinear dynamical systems modelling asymmetric gene networks”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007), 8–17 (in Russian) | MR
[21] Golubyatnikov V. P., Golubyatnikov I. V., “On Periodic Trajectories in Odd-Dimensional Gene Networks Models”, Russian J. of Numerical Analysis and Mathematical Modeling, 26:4 (2011), 397–412 | MR | Zbl
[22] N. B. Ayupova, V. P. Golubyatnikov, “On two classes of nonlinear dynamical systems. The four-dimensional case”, Sib. Mat. Zh., 56:2 (2015), 282–289 (in Russian) | MR
[23] A. A. Akinshin, V. P. Golubyatnikov, “Geometric characteristics of cycles in some symmetric dynamical systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 3–12 (in Russian)
[24] N. B. Ayupova, V. P. Golubyatnikov, “On the uniqueness of a cycle in an asymmetric 3-dimensional model of a molecular repressilator”, Sib. Zh. Ind. Mat., 17:1 (2014), 3–7 (in Russian)
[25] Gaidov Yu. A., Golubyatnikov V. P., “On Cycles and Other Geometric Phenomena in Phase Portraits of Some Nonlinear Dynamical Systems”, Geometry and applications, Springer Proceedings in Mathematics and Statistics, 72, Springer, N.Y., 2014, 225–233 | DOI | MR | Zbl
[26] V. P. Golubyatnikov, I. V. Golubyatnikov, “Geometry and topology of phase portraits of Glass-Pasternack dynamical systems in small dimensions”, Mat. Str. Mod., 2014, no. 3(31), 40–47 (in Russian)