Boolean algebras with distinguished endomorphisms and generating trees
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 29-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a characterization of computable Boolean algebras with distinguished endomorphisms in terms of generating trees and mappings of the trees. We prove that every degree spectrum of a countable family of subsets of $\omega$ is a degree spectrum of some natural enrichment of a Boolean algebra.
Keywords: Boolean algebra, Boolean algebra with distinguished endomorphisms, degree spectrum
Mots-clés : computable dimension.
@article{VNGU_2015_15_1_a2,
     author = {N. A. Bazhenov},
     title = {Boolean algebras with distinguished endomorphisms and generating trees},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {29--44},
     year = {2015},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a2/}
}
TY  - JOUR
AU  - N. A. Bazhenov
TI  - Boolean algebras with distinguished endomorphisms and generating trees
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 29
EP  - 44
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a2/
LA  - ru
ID  - VNGU_2015_15_1_a2
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%T Boolean algebras with distinguished endomorphisms and generating trees
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 29-44
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a2/
%G ru
%F VNGU_2015_15_1_a2
N. A. Bazhenov. Boolean algebras with distinguished endomorphisms and generating trees. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a2/

[1] S. S. Goncharov, “Constructivizability of superatomic Boolean algebras”, Algebra and Logic, 12:6 (1973), 17–22 | DOI | MR | Zbl

[2] N. T. Kogabaev, “Universal numbering for constructive $I$-algebras”, Algebra and Logic, 40:5 (2001), 315–326 | DOI | MR | Zbl

[3] N. A. Bazhenov, R. R. Tukhbatullina, “Constructivizability of the Boolean algebra $\mathfrak{B}(\omega)$ with a distinguished automorphism”, Algebra and Logic, 51:5 (2012), 384–403 | DOI | MR | Zbl

[4] Yu. L. Ershov, Theory of Numberings, Nauka, M., 1977 (in Russian)

[5] S. S. Goncharov, Countable Boolean Algebras and Decidability, Nauch. Kniga, Novosibirsk, 1996 (in Russian) | MR

[6] S. S. Goncharov, Yu. L. Ershov, Constructive Models, Nauch. Kniga, Novosibirsk, 1999 (in Russian)

[7] Ash C. J., Khight J., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier Science, Amsterdam, 2000 | Zbl

[8] N. A. Bazhenov, “Computable numberings of the class of Boolean algebras with distinguished endomorphisms”, Algebra and Logic, 52:5 (2013), 355–366 | DOI | MR | Zbl

[9] Goncharov S., Harizanov V., Knight J., McCoy C., Miller R., Solomon R., “Enumerations in Computable Structure Theory”, Ann. Pure Appl. Logic, 136:3 (2005), 219–246 | DOI | MR | Zbl

[10] S. S. Goncharov, “Computable single-valued numerations”, Algebra and Logic, 19:5 (1980), 325–356 | DOI | MR

[11] Knight J. F., “Degrees Coded in Jumps of Orderings”, J. Symb. Logic, 51:4 (1986), 1034–1042 | DOI | MR | Zbl

[12] S. S. Goncharov, “Problem of the number of non-self-equivalent constructivizations”, Algebra and Logic, 19:6 (1980), 401–414 | DOI | MR

[13] I. Sh. Kalimullin, “Spectra of degrees of some structures”, Algebra and Logic, 46:6 (2007), 399–408 | DOI | MR | Zbl

[14] I. Sh. Kalimullin, “Almost computably enumerable families of sets”, Sb. Math., 199:10 (2008), 1451–1458 | DOI | DOI | MR | Zbl

[15] Wehner S., “Enumerations, Countable Structures and Turing Degrees”, Proc. Amer. Math. Soc., 126:7 (1998), 2131–2139 | DOI | MR | Zbl

[16] I. Sh. Kalimullin, Degree spectra of algorithmic system, KFU, Kazan, 2013 (in Russian)

[17] N. A. Bazhenov, R. R. Tukhbatullina, “Computable categoricity of the Boolean algebra $\mathfrak{B}(\omega)$ with a distinguished automorphism”, Algebra and Logic, 52:2 (2013), 89–97 | DOI | MR | Zbl

[18] P. M. Semukhin, “The degree spectra of definable relations on Boolean algebras”, Sib. Mat. J., 46:4 (2005), 740–750 | DOI | MR | Zbl

[19] Slaman T. A., “Relative to Any Nonrecursive Set”, Proc. Amer. Math. Soc., 126:7 (1998), 2117–2122 | DOI | MR | Zbl

[20] Khoussainov B., Kowalski T., “Computable Isomorphisms of Boolean Algebras with Operators”, Studia Logica, 100:3 (2012), 481–496 | DOI | MR | Zbl