On the lattices of continuous functions
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 3-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study some new applications of the generalized method of interpretations to prove decidability of the theories of some popular structures in analysis. Earlier we proved decidability of the theory of a real continuous functions lattice by this method. In this work we generalize the lattice of real continuous functions to an algebraic structure of continuous functions over a perfectly normal space. By the generalized method of interpretations we prove decidability of the theory of this structure under some conditions.
Keywords: elementary theory, lattice of continuous functions, decidability of theories, perfectly normal space, generalized method of interpretations.
@article{VNGU_2015_15_1_a0,
     author = {V. S. Amstislavskiy},
     title = {On the lattices of continuous functions},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--20},
     year = {2015},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a0/}
}
TY  - JOUR
AU  - V. S. Amstislavskiy
TI  - On the lattices of continuous functions
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2015
SP  - 3
EP  - 20
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a0/
LA  - ru
ID  - VNGU_2015_15_1_a0
ER  - 
%0 Journal Article
%A V. S. Amstislavskiy
%T On the lattices of continuous functions
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2015
%P 3-20
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a0/
%G ru
%F VNGU_2015_15_1_a0
V. S. Amstislavskiy. On the lattices of continuous functions. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 15 (2015) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/VNGU_2015_15_1_a0/

[1] Grzegorczyk A., “Undecidability of Some Topological Theories”, Fundamenta Mathematicae, 38 (1951), 137–152 | MR

[2] M. O. Rabin, “Decidable theories”, Handbook of Mathematical Logic, ed. J. Barwise, North Holland Publishing Company, Amsterdam–N. Y.–Oxford, 1999, 595–630 | MR | MR

[3] Flum J., Ziegler M., Topological Model Theory, Lecture Notes in Mathematics, 769, eds. A. Dold, B. Eckmann, Springer, Berlin, 1986 | MR

[4] V. S. Amstislavskiy, “Elementary Theories of Continuous Functions Spaces”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012), 22–34 (in Russian) | Zbl

[5] Soare R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic, Springer Science and Business Media, 1987 | DOI | MR

[6] Ehrenfeucht A., “Decidability of the Theory of Linear Ordering Relation”, Notices Amer. Math. Soc., 6 (1959), 268–269

[7] Yu. L. Ershov, Problems of Decidability and Constructive Models, Nauka, M., 1980 (in Russian)

[8] Yu. L. Ershov, I. A. Lavrov, A. D. Taimanov, M. A. Taitslin, “Elementary theories”, Rus. Mat. Surveys, 20:4 (1965), 35–105 | DOI | MR | Zbl

[9] A. I. Kokorin, A. G. Pinus, “Decidability problems of extended theories”, Rus. Mat. Surveys, 33:2 (1978), 53–96 | DOI | MR | Zbl

[10] Hodges W., Model Theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[11] C. C. Chang, H. K. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, North Holland Publishing Company, Amsterdam–N. Y.–Oxford, 1990 | MR | Zbl

[12] Rabin M., “A Simple Method for Undecidability Proofs and Some Applications”, Logic, Methodology and Philosophy of Science, v. 2, ed. Y. Bar-Hillel, North-Holland, Amsterdam, 1965, 58–68 | MR

[13] Rabin M., “Decidability of Second Order Theories and Automata on Infinite Trees”, Trans. Amer. Math. Soc., 141 (1969), 1–35 | MR | Zbl

[14] Tarski A., A Decision Method for Elementary Algebra and Geometry, University of California Press, Berkeley, 1951 | MR | Zbl

[15] R. Engelking, General Topology, Panstwowe Wydawnictwo Naukowe, Warszawa, 1977 | MR

[16] Ostaszewski A. J., “On Countably Compact, Perfectly Normal Spaces”, J. of the London Math. Soc., 14:2 (1976), 505–516 | DOI | MR | Zbl

[17] Ishiu T., “A Fine Structure Construction of a Perfectly Normal Non-Realcompact Space”, Topological Proc., 30:2 (2006), 535–545 | MR

[18] Rosenlicht M., Introduction to Analysis, $1^\text{st}$ ed., Dover Publications, 1985 | MR

[19] Heinonen J., “Nonsmooth calculus”, Bull. Amer. Math. Soc., 44 (2007), 163–232 | DOI | MR | Zbl

[20] P. S. Alexandrov, Introduction in Set Theory and General Topology, Nauka, M., 1977 (in Russian)