@article{VNGU_2014_14_4_a7,
author = {N. E. Tokmagambetov},
title = {Gellerstedt {Equation} with the {Perturbation} of the {Cauchy} {Condition}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {79--85},
year = {2014},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/}
}
N. E. Tokmagambetov. Gellerstedt Equation with the Perturbation of the Cauchy Condition. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 79-85. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/
[1] A. M. Nakhushev, Problems with shifts for partial differential equations, Nauka, M., 2006 (in Russian)
[2] Cannon J. R., “The Solution of the Heat Equation Subject to the Specification of Energy”, Quart. of Appl. Math., 21:3 (1963), 155–160
[3] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI
[4] N. I. Ionkin, “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition”, Differ. Equ., 13:2 (1977), 204–211
[5] L. A. Muravei, A. V. Filinovskii, “On the non-local boundary-value problem for a parabolic equation”, Math. Notes, 54:4 (1993), 1045–1057 | DOI
[6] A. I. Kozhanov, “On the solvability of certain spatially nonlocal boundary-value problems for linear hyperbolic equations of second order”, Math. Notes, 90:1–2 (2011), 238–249 | DOI | DOI
[7] A. I. Kozhanov, “On the solvability of a boundary-value problem with a nonlocal boundary condition for linear parabolic equations”, Vestn. Sam. Gos. Teh. Univ., Ser. Fiz-Mat. Nauki, 2004, no. 30, 63–69 (in Russian) | DOI
[8] A. I. Kozhanov, L. S. Pul'kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI
[9] L. S. Pul'kina, “A mixed problem with an integral condition for a hyperbolic equation”, Math. Notes, 74:3 (2003), 411–421 | DOI | DOI
[10] L. S. Pul'kina, “Mixed problem with a nonlocal condition for a hyperbolic equation”, Nonclassical equations of mathematical physics, Inst. Matem. SO RAN, 2002, 176–184 (in Russian)
[11] A. V. Bitsadze, Some classes of partial differential equations, Gordon Breach Science Publishers, New York, 1988
[12] M. M. Smirnov, Degenerate hyperbolic equations, Vyshaya Shkola, Minsk, 1977 (in Russian)
[13] H. Bateman, A. Erdélyi, Higher transcendental functions, v. 1, McGraw Hill Book Company, New York, 1953
[14] T. Sh. Kal'menov, N. E. Tokmagambetov, “On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain”, Sib. Mat. J., 54:6 (2013), 1023–1028 | DOI
[15] B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Laplace operator with $\delta$-like potentials”, Rus. Math., 58:2 (2014), 6–12 | DOI
[16] Suragan D., Tokmagambetov N., “On Transparent Boundary Conditions for the High-Order Heat Equation”, Sib. Élektron. Mat. Izv., 10 (2013), 141–149