Gellerstedt Equation with the Perturbation of the Cauchy Condition
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 79-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the characteristic triangle for a first kind degenerate hyperbolic equation is proved ill-posedness of the problem with integral perturbation of the Cauchy condition on the line of degeneracy.
Keywords: Gellerstedt, degenerate hyperbolic equation, integral perturbation of the Cauchy condition, nonlocal boundary condition, the hypergeometric function.
@article{VNGU_2014_14_4_a7,
     author = {N. E. Tokmagambetov},
     title = {Gellerstedt {Equation} with the {Perturbation} of the {Cauchy} {Condition}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {79--85},
     year = {2014},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/}
}
TY  - JOUR
AU  - N. E. Tokmagambetov
TI  - Gellerstedt Equation with the Perturbation of the Cauchy Condition
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 79
EP  - 85
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/
LA  - ru
ID  - VNGU_2014_14_4_a7
ER  - 
%0 Journal Article
%A N. E. Tokmagambetov
%T Gellerstedt Equation with the Perturbation of the Cauchy Condition
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 79-85
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/
%G ru
%F VNGU_2014_14_4_a7
N. E. Tokmagambetov. Gellerstedt Equation with the Perturbation of the Cauchy Condition. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 79-85. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/

[1] A. M. Nakhushev, Problems with shifts for partial differential equations, Nauka, M., 2006 (in Russian)

[2] Cannon J. R., “The Solution of the Heat Equation Subject to the Specification of Energy”, Quart. of Appl. Math., 21:3 (1963), 155–160

[3] L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI

[4] N. I. Ionkin, “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition”, Differ. Equ., 13:2 (1977), 204–211

[5] L. A. Muravei, A. V. Filinovskii, “On the non-local boundary-value problem for a parabolic equation”, Math. Notes, 54:4 (1993), 1045–1057 | DOI

[6] A. I. Kozhanov, “On the solvability of certain spatially nonlocal boundary-value problems for linear hyperbolic equations of second order”, Math. Notes, 90:1–2 (2011), 238–249 | DOI | DOI

[7] A. I. Kozhanov, “On the solvability of a boundary-value problem with a nonlocal boundary condition for linear parabolic equations”, Vestn. Sam. Gos. Teh. Univ., Ser. Fiz-Mat. Nauki, 2004, no. 30, 63–69 (in Russian) | DOI

[8] A. I. Kozhanov, L. S. Pul'kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI

[9] L. S. Pul'kina, “A mixed problem with an integral condition for a hyperbolic equation”, Math. Notes, 74:3 (2003), 411–421 | DOI | DOI

[10] L. S. Pul'kina, “Mixed problem with a nonlocal condition for a hyperbolic equation”, Nonclassical equations of mathematical physics, Inst. Matem. SO RAN, 2002, 176–184 (in Russian)

[11] A. V. Bitsadze, Some classes of partial differential equations, Gordon Breach Science Publishers, New York, 1988

[12] M. M. Smirnov, Degenerate hyperbolic equations, Vyshaya Shkola, Minsk, 1977 (in Russian)

[13] H. Bateman, A. Erdélyi, Higher transcendental functions, v. 1, McGraw Hill Book Company, New York, 1953

[14] T. Sh. Kal'menov, N. E. Tokmagambetov, “On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain”, Sib. Mat. J., 54:6 (2013), 1023–1028 | DOI

[15] B. E. Kanguzhin, D. B. Nurakhmetov, N. E. Tokmagambetov, “Laplace operator with $\delta$-like potentials”, Rus. Math., 58:2 (2014), 6–12 | DOI

[16] Suragan D., Tokmagambetov N., “On Transparent Boundary Conditions for the High-Order Heat Equation”, Sib. Élektron. Mat. Izv., 10 (2013), 141–149