Gellerstedt Equation with the Perturbation of the Cauchy Condition
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 79-85
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the characteristic triangle for a first kind degenerate hyperbolic equation is proved ill-posedness of the problem with integral perturbation of the Cauchy condition on the line of degeneracy.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Gellerstedt, degenerate hyperbolic equation, integral perturbation of the Cauchy condition, nonlocal boundary condition, the hypergeometric function.
                    
                  
                
                
                @article{VNGU_2014_14_4_a7,
     author = {N. E. Tokmagambetov},
     title = {Gellerstedt {Equation} with the {Perturbation} of the {Cauchy} {Condition}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {79--85},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/}
}
                      
                      
                    TY - JOUR AU - N. E. Tokmagambetov TI - Gellerstedt Equation with the Perturbation of the Cauchy Condition JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 79 EP - 85 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/ LA - ru ID - VNGU_2014_14_4_a7 ER -
N. E. Tokmagambetov. Gellerstedt Equation with the Perturbation of the Cauchy Condition. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 79-85. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a7/
