Spectral Analysis of Differential Operator with Involution
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 64-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the differential operator $L$ with involution, defined by a differential expression $l(y)=y'(x) - q(x)y(\omega-x)$ where $q\in L_2[0,\omega]$ and boundary conditions $y(0)=y(\omega).$ The method of similar operators is used to analyze the spectral properties of the operator. The asymptotic of spectrum and the estimations for equiconvergence of spectral decomposition are obtained.
Keywords: spectrum of operator, differential operator with involution, similar operators method, asymptotic of spectrum
Mots-clés : spectral decomposition, equiconvergence of spectral decomposition.
@article{VNGU_2014_14_4_a6,
     author = {E. Yu. Romanova},
     title = {Spectral {Analysis} of {Differential} {Operator} with {Involution}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {64--78},
     year = {2014},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a6/}
}
TY  - JOUR
AU  - E. Yu. Romanova
TI  - Spectral Analysis of Differential Operator with Involution
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 64
EP  - 78
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a6/
LA  - ru
ID  - VNGU_2014_14_4_a6
ER  - 
%0 Journal Article
%A E. Yu. Romanova
%T Spectral Analysis of Differential Operator with Involution
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 64-78
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a6/
%G ru
%F VNGU_2014_14_4_a6
E. Yu. Romanova. Spectral Analysis of Differential Operator with Involution. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 64-78. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a6/

[1] Kalman R. E., Bucy R., “New Results in Linear Filtering and Prediction Theory”, ASME J. Basis Eng., 83 (1961), 95–108 | DOI

[2] M. I. Rozovskii, “Mechanics of Elastic-Hereditary Environment”, The Results of Science. Firmness and Elasticity, VININTI, M., 1967, 165–250 (in Russian)

[3] V. S. Vladimirov, Equations of Mathematical Physics, Mir Publishers, M., 1983 (in Russian)

[4] Dunford N., Schwartz J. T., Linear Operators. Spectral operators, Interscience Publication, New York–London, 1964

[5] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrodinger and Dirac operators”, Rus. Mat. Surveys, 61:4 (2006), 663–766 | DOI | DOI

[6] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI

[7] A. G. Baskakov, Harmonic Analysis of Linear Operators, Voronezh, 1987 (in Russian)

[8] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izv. RAN. Ser. Mat., 58:4 (1994), 3–32 (in Russian)

[9] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Mat., 75:3 (2011), 445–469 | DOI | DOI

[10] A. O. Shcherbakov, “Spectral analysis of the non-self-adjoint Sturm–Liouville operator with a singular potential”, Scientific statements of Belgorod State University, 11(154):31 (2013), 102–108 (in Russian)

[11] Shcherbakov A. O., “To the Spectral Analysis of the Sturm–Liouville Operator with a Singular Potential”, Spectral and Evolution Problems, 23 (2013), 188–191

[12] E. Yu. Romanova, “Method of similar operator in spectral analysis of differentional equation with involution”, Scientific statements of Belgorod State University, 5(176):34 (2014), 73–78 (in Russian)

[13] Romanova E. Yu., “Similar Operators Method in Spectral Analysis of Dirac's Operator in the Lebesgue Spaces”, Spectral and Evolution Problems, 21:2 (2011), 185–186

[14] T. Kato, Perturbation Theory of Linear Operators. Principles of Mathematical Sciences, Springer-Verlag, 1976

[15] I. C. Gohberg, M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Translations of mathematical monographs, 18, American Mathematical Soc., Providence, R.I., 1969