Group Symmetry for Dynamica Bifurcation Problems with Schmidt Spectrum in Linearization
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 50-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results [1] for stationary problems in the theory of branching for solutions of non-linear equations with the Schmidt spectrum in the linearization and articles [2; 3] applied to the problem of periodic solutions of the Poincare–Andronov–Hopf bifurcation in the spectrum Schmidt.
Keywords: dynamical bifurcation problems, E. Schmidt spectrum, group symmetry, $G$-invariant implicit operator theorem, variational type branching equations in the root-subspaces.
Mots-clés : Poincarè–Andronov–Hopf bifurcation
@article{VNGU_2014_14_4_a5,
     author = {I. V. Konopleva and B. V. Loginov},
     title = {Group {Symmetry} for {Dynamica} {Bifurcation} {Problems} with {Schmidt} {Spectrum} in {Linearization}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {50--63},
     year = {2014},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a5/}
}
TY  - JOUR
AU  - I. V. Konopleva
AU  - B. V. Loginov
TI  - Group Symmetry for Dynamica Bifurcation Problems with Schmidt Spectrum in Linearization
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 50
EP  - 63
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a5/
LA  - ru
ID  - VNGU_2014_14_4_a5
ER  - 
%0 Journal Article
%A I. V. Konopleva
%A B. V. Loginov
%T Group Symmetry for Dynamica Bifurcation Problems with Schmidt Spectrum in Linearization
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 50-63
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a5/
%G ru
%F VNGU_2014_14_4_a5
I. V. Konopleva; B. V. Loginov. Group Symmetry for Dynamica Bifurcation Problems with Schmidt Spectrum in Linearization. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 50-63. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a5/

[1] Loginov B. V., Konopleva I. V., Mironova L. V., “Stationary Bifurcation Problems with Schmidt's Spectrum in the Linearization under Group Symmetry Conditions”, J. of Middle-Volga Math. Soc., 13:3 (2011), 13–15

[2] Loginov B. V., Konopleva I. V., “Group Symmetry Bifurcation Problems with Schmid't Spectrum in the Linearization”, Progress in Analiysis, Proc. of the 8 th Congress of the ISAAC (22–27.08.2011), v. 2, Peoples' Friendship University of Russia Publ. House, M., 2012, 279–287

[3] I. V. Konopleva, B. V. Loginov, “Bifurcation, symmetry and cosymmetry in differential equations unresolved with respect to the derivative with variational branching equations”, Dokl. Mat., 80:1 (2009), 541–546 | DOI

[4] B. V. Loginov, I. V. Konopleva, Yu. B. Rousak, “Symmetry and potentiality branching equations in the root-subspaces for implicitly given stationary and dynamic bifurcation problems”, Izv. Vuzov. Severo-Kavk. reg. Estestv. nauki, 2009, Spetsvypusk, 115–124 (in Russian)

[5] B. V. Loginov, I. V. Konopleva, Yu. B. Rousak, “Implicit operator theorems under group symmetry conditions”, Dokl. Mat., 84:2 (2011), 607–612 | DOI

[6] B. V. Loginov, I. V. Konopleva, Yu. B. Rousak, “Implicit operator theorems under group symmetry conditions”, Izv. Irk. Gos. Univ. Ser. Mat., 4:1 (2011), 31–43 (in Russian)

[7] B. V. Loginov, I. V. Konopleva, L. V. Mironova, “Dynamical bifurcation problems with Schmidt's spectrum in the linearization under group symmetry conditions”, J. of Middle-Volga Math. Soc., 14:1 (2012), 25–35 (in Russian)

[8] N. I. Makarenko, “About branching of solutions of the invariant variation equations”, Dokl. RAN. Mat., 348:3 (1996), 302–304 (in Russian)

[9] N. I. Makarenko, “Symmetry and cosymmetry variational problems in the theory of waves”, Proc. of Int. School-Seminar (2001), Rostov-on-Don State Univ. Press, 2001, 109–120 (in Russian)

[10] Sigrist R., Matthews P., “Symmetric Spiral Patterns on Spheres”, SIAM J. on Applied Dynamical Systems, 10:3 (2011), 1177–1211 | DOI

[11] A. S. Il'yinsky, E. Yu. Fomenko, “The study of infinite-dimensional systems of linear algebraic equations of second order in the waveguide diffraction problem”, J. of Comp. Math. and Mat. Phys., 31:3 (1991), 339–352 (in Russian)

[12] A. S. Il'yinsky, G. Ya. Slepyan, Oscillations and Waves in Electrodynamical Systems with Losses, Moscow State Univ. Press, M., 1983 (in Russian)

[13] D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear problem mate eigenvalues describing propagation of TE-waves in two-layer cylindrical dielectric waveguides”, J. of Comp. Math. and Mat. Phys., 53:7 (2013), 1150–1161 (in Russian) | DOI

[14] Yu. G. Smirnov, S. N. Kupriyanova, D. V. Valovik, “On the propagation of electromagnetic waves in inhomogeneous cylindrical dielectric waveguides filled with a nonlinear medium”, Izv. Vuzov. The Volga region. Phys.-math. Sci., 2012, no. 3, 3–16 (in Russian)

[15] D. V. Valovik, Yu. G. Smirnov, The Propagation of Electromagnetic Waves in Nonlinear Layered Media, Penza State univ. Press, Penza, 2010 (in Russian)

[16] M. M. Vainberg, V. A. Trenogin, Theory of Branching for Solutions of Non-Linear Equations, Noordhoff, Leyden, 1974

[17] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Ser. Math. and Appl., 550, Kluwer Acad. Publ., Dordrecht, 2002

[18] B. V. Loginov, L. R. Kim-Tyan, “Potentiality conditions to branching equations in the root subspaces and stability of branching solutions”, Proc. of the X Int. Chetaevsky conference (12–16.06.2012), v. 2, Stability, Kazan State Aviation Tech. Univ. Press, 2012, 343–352 (in Russian)

[19] B. V. Loginov, L. R. Kim-Tyan, “Potentiality conditions to branching equations and branching equations in the root subspaces in stationary and dynamicc bifurcation”, Proc. of the Int. Conference Herzen readings, Some Actual Problems of Mathematics and Mathematics Education, 65, St.-Petersburg State Pedagogical Univ. Press, 2012, 64–70 (in Russian)

[20] Vanderbauvede A., “Lyapunov–Schmidt Method for Dynamical Systems”, Math. of Complexity and Dynamical Systems, ed. R. A. Meyers, Springer, 2011, 937–952