Keywords: difference operators, invertibility of operators.
@article{VNGU_2014_14_4_a4,
author = {A. Yu. Duplishcheva},
title = {About {Conditions} of {Invertibility} of {Difference} {Operators} of the {Second} {Order}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {44--49},
year = {2014},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/}
}
TY - JOUR AU - A. Yu. Duplishcheva TI - About Conditions of Invertibility of Difference Operators of the Second Order JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 44 EP - 49 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/ LA - ru ID - VNGU_2014_14_4_a4 ER -
A. Yu. Duplishcheva. About Conditions of Invertibility of Difference Operators of the Second Order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 44-49. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/
[1] A. G. Baskakov, “Invertibility and the Fredholm property of difference operators”, Mathematical Notes, 67:6 (2000), 690–698 | DOI | DOI
[2] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Sib. Mat. J., 42:6 (2001), 1026–1035 | DOI
[3] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Rus. Mat. Surveys, 68:1 (2013), 69–116 | DOI | DOI
[4] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigrouos of difference relations”, Izv. Mat., 73:2 (2009), 215–278 | DOI | DOI
[5] V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Mat., 77:1 (2013), 3–19 | DOI | DOI