About Conditions of Invertibility of Difference Operators of the Second Order
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 44-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear difference operators of the second order are considered. Each operator is assigned a matrix operator of the first order. The statement about simultaneous invertibility of such operators was proved. A sufficient condition about invertibility of difference operators is obtained.
Mots-clés : kernel, image
Keywords: difference operators, invertibility of operators.
@article{VNGU_2014_14_4_a4,
     author = {A. Yu. Duplishcheva},
     title = {About {Conditions} of {Invertibility} of {Difference} {Operators} of the {Second} {Order}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {44--49},
     year = {2014},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Duplishcheva
TI  - About Conditions of Invertibility of Difference Operators of the Second Order
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 44
EP  - 49
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/
LA  - ru
ID  - VNGU_2014_14_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Duplishcheva
%T About Conditions of Invertibility of Difference Operators of the Second Order
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 44-49
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/
%G ru
%F VNGU_2014_14_4_a4
A. Yu. Duplishcheva. About Conditions of Invertibility of Difference Operators of the Second Order. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 44-49. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a4/

[1] A. G. Baskakov, “Invertibility and the Fredholm property of difference operators”, Mathematical Notes, 67:6 (2000), 690–698 | DOI | DOI

[2] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Sib. Mat. J., 42:6 (2001), 1026–1035 | DOI

[3] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Rus. Mat. Surveys, 68:1 (2013), 69–116 | DOI | DOI

[4] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigrouos of difference relations”, Izv. Mat., 73:2 (2009), 215–278 | DOI | DOI

[5] V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Mat., 77:1 (2013), 3–19 | DOI | DOI