@article{VNGU_2014_14_4_a3,
author = {G. V. Demidenko and I. I. Matveeva},
title = {Estimates for {Solutions} to {One} {Class} of {Nonlinear} {Systems} of {Neutral} {Type} with {Several} {Delays}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {32--43},
year = {2014},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a3/}
}
TY - JOUR AU - G. V. Demidenko AU - I. I. Matveeva TI - Estimates for Solutions to One Class of Nonlinear Systems of Neutral Type with Several Delays JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 32 EP - 43 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a3/ LA - ru ID - VNGU_2014_14_4_a3 ER -
%0 Journal Article %A G. V. Demidenko %A I. I. Matveeva %T Estimates for Solutions to One Class of Nonlinear Systems of Neutral Type with Several Delays %J Sibirskij žurnal čistoj i prikladnoj matematiki %D 2014 %P 32-43 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a3/ %G ru %F VNGU_2014_14_4_a3
G. V. Demidenko; I. I. Matveeva. Estimates for Solutions to One Class of Nonlinear Systems of Neutral Type with Several Delays. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 32-43. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a3/
[1] L. E. El'sgol'ts, S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York–London, 1973
[2] G. V. Demidenko, I. I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 20–28 (in Russian)
[3] G. V. Demidenko, I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Sib. Mat. J., 48:5 (2007), 824–836 | DOI
[4] Demidenko G. V., “Stability of Solutions to Linear Differential Equations of Neutral Type”, J. Anal. Appl., 7:3 (2009), 119–130
[5] G. V. Demidenko, T. V. Kotova, M. A. Skvortsova, “Stability of solutions to differential equations of neutral type”, J. Math. Sci., 186:3 (2012), 394–406 | DOI
[6] I. I. Matveeva, A. A. Shcheglova, “Some estimates of the solutions to time-delay differential equations with parameters”, J. Appl. Ind. Math., 5:3 (2011), 391–399 | DOI
[7] G. V. Demidenko, E. S. Vodopyanov, M. A. Skvortsova, “Estimates of solutions to the linear differential equations of neutral type with several delays of the argument”, J. Appl. Ind. Math., 7:4 (2013), 472–479 | DOI
[8] I. I. Matveeva, “Estimates of solutions to a class of systems of nonlinear delay differential equations”, J. Appl. Ind. Math., 7:4 (2013), 557–566 | DOI
[9] G. V. Demidenko, I. I. Matveeva, “On exponential stability of solutions to one class of systems of differential equations of neutral type”, J. Appl. Ind. Math., 8:4 (2014), 510–520 | DOI
[10] Demidenko G. V., Matveeva I. I., “Estimates for Solutions to Linear Systems of Neutral Type with Several Delays”, J. Anal. Appl., 12:1–2 (2014), 37–52
[11] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977
[12] D. G. Korenevskij, Stability of dynamical systems under random perturbations of parameters. Algebraic criteria, Nauk. dumka, Kiev, 1989 (in Russian)
[13] Kolmanovskii V. B., Myshkis A. D., Introduction to the Theory and Applications of Functional-Differential Equations, Mathematics and its Applications, 463, Kluwer Academic Publishers, Dordrecht, 1999
[14] Kharitonov V. L., Time-Delay Systems. Lyapunov Functionals and Matrices, Control Engineering, Birkhäuser/Springer, N.Y., 2013