Mathematical Modeling of Interaction of Two Cells in the Proneural Cluster of the Wing Imaginal Disk of D. Melanogaster
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the phase portrait of a 6-dimensional nonlinear dynamical system considered as a model of an early stage of morphogenesis of D. melanogaster, i.e., appearance of its parental cell in the proneural cluster. Sufficient conditions of existence of two stable equilibrium points of this system are described, and biological interpretation is given.
Keywords: cell complex, nonlinear dynamical systems, negative and positive feedbacks, equilibrium points, the Notch signaling pathway.
@article{VNGU_2014_14_4_a0,
     author = {A. A. Akinshin and T. A. Bukharina and V. P. Golubyatnikov and D. P. Furman},
     title = {Mathematical {Modeling} of {Interaction} of {Two} {Cells} in the {Proneural} {Cluster} of the {Wing} {Imaginal} {Disk} {of~D.~Melanogaster}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {3--10},
     year = {2014},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a0/}
}
TY  - JOUR
AU  - A. A. Akinshin
AU  - T. A. Bukharina
AU  - V. P. Golubyatnikov
AU  - D. P. Furman
TI  - Mathematical Modeling of Interaction of Two Cells in the Proneural Cluster of the Wing Imaginal Disk of D. Melanogaster
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 3
EP  - 10
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a0/
LA  - ru
ID  - VNGU_2014_14_4_a0
ER  - 
%0 Journal Article
%A A. A. Akinshin
%A T. A. Bukharina
%A V. P. Golubyatnikov
%A D. P. Furman
%T Mathematical Modeling of Interaction of Two Cells in the Proneural Cluster of the Wing Imaginal Disk of D. Melanogaster
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 3-10
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a0/
%G ru
%F VNGU_2014_14_4_a0
A. A. Akinshin; T. A. Bukharina; V. P. Golubyatnikov; D. P. Furman. Mathematical Modeling of Interaction of Two Cells in the Proneural Cluster of the Wing Imaginal Disk of D. Melanogaster. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 4, pp. 3-10. http://geodesic.mathdoc.fr/item/VNGU_2014_14_4_a0/

[1] S. Smale, “A mathematical model of two cells via Turing's equation”, Lectures on Mathematics in the Life Sciences 6, 1974, 17–26

[2] Furman D. P., Bukharina T. A., “How Drosophila melanogaster Forms its Mechanoreceptors”, Current Genomics, 8 (2008), 312–323 | DOI

[3] D. P. Furman, T. A. Bukharina, “The gene contorl of development of macrotrichia of Drosophila melanogaster”, Ontogenesis, 39:4 (2008), 245–258 (in Russian)

[4] Furman D. P., Bukharina T. A., “The Gene Network Determining Development of Drosophila melanogaster Mechanoreceptors”, Comp. Biol. Chem., 33 (2009), 231–234 | DOI

[5] D. P. Furman, T. A. Bukharina, “The gene control of development of drosophila melanogaster mechanoreceptors — description in DB “NEUROGENESIS””, Inf. Vestnik VOGiS, 13 (2009), 186–193 (in Russian)

[6] V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, S. I. Fadeev, “Theory of the gene networks”, System Comp. Biology, eds. N. A. Kolchanov, S. S. Goncharov, Izd. SO RAN, Novosibirsk, 2008, 395–480 (in Russian)

[7] T. A. Bukharina, V. P. Golubyatnikov, I. V. Golubyatnikov, D. P. Furman, “Mathematical modeling of the first phase of morphogenesis of mechanoreceptors in D. melanogaster”, J. of Appl. and Industr. Mat., 6:2 (2012), 145–149 | DOI

[8] T. A. Bukharina, V. P. Golubyatnikov, I. V. Golubyatnikov, D. P. Furman, “Model research of morphogenesis of macrotrichia D. melanogaster”, Ontogenesis, 43:1 (2012), 54–59 (in Russian)

[9] Murrey J. D., Mathematical Biology, v. I, An Introduction, 3$^\mathrm{rd}$ edition, Springer-Verlag, N.Y., 2002

[10] Yu. A. Gaydov, V. P. Golubyatnikov, “On some nonlinear dynamical systems modelling asymmetric gene networks”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007), 23–32 (in Russian)

[11] Yu. A. Gaydov, V. P. Golubyatnikov, “On some nonlinear dynamical systems modelling asymmetric gene networks, 2”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:1 (2010), 18–28 (in Russian)

[12] Golubyatnikov V. P., Likhoshvai V. A., Volokitin E. P., Gaidov Yu. E., Osipov A. F., “Periodic Trajectories and Andronov–Hopf Bifurcations in Models of Gene Networks”, Bioinformatics of Genome Regualtion and Structures II, Springer, 2006, 405–414 | DOI

[13] Tyson J. J., “On the Existence of Oscillatory Solutions in Negative Feedback Cellular Control Processes”, J. of Mathematical Biology, 1 (1975), 311–315 | DOI

[14] A. A. Akinshin, Dynamical Systems Portraits