Estimating a Number of Cells via a Number of Occupied Ones under Random Choice
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 107-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a scheme of the series where support of the distribution and the sample size increase asymptotically proportionally. One knows a number of different elements of the sample only. We give consistent and asymptotically normal estimator of the parameter, defined as the limiting ratio of sample size to the number of elements of the support.
Keywords: number of different elements, a scheme of the series, consistency and asymptotic normality of the estimator.
@article{VNGU_2014_14_3_a8,
     author = {M. G. Chebunin},
     title = {Estimating a {Number} of {Cells} via a {Number} of {Occupied} {Ones} under {Random} {Choice}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {107--113},
     year = {2014},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/}
}
TY  - JOUR
AU  - M. G. Chebunin
TI  - Estimating a Number of Cells via a Number of Occupied Ones under Random Choice
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 107
EP  - 113
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/
LA  - ru
ID  - VNGU_2014_14_3_a8
ER  - 
%0 Journal Article
%A M. G. Chebunin
%T Estimating a Number of Cells via a Number of Occupied Ones under Random Choice
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 107-113
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/
%G ru
%F VNGU_2014_14_3_a8
M. G. Chebunin. Estimating a Number of Cells via a Number of Occupied Ones under Random Choice. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 107-113. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/

[1] Kolchin V. F., Sevast'yanov B. A., Chistyakov V. P., Random Allocations, Scripta Series in Mathematics, V. H. Winston and Sons, Washington, 1978

[2] Stepanov I. A., “Exact Solutions of the One-Dimensional, Two-Dimensional, and Three-Dimensional Ising Models”, Nano Science and Nano Technology: An Indian Journal, 6:3 (2012), 118–122

[3] Mikhailov V. G., “Asymptotic Normality of the Number of Empty Cells for Group Allocation of Particles”, Theory Probab. Appl., 25:1 (1980), 82–90 | DOI

[4] Mahmoud H. M., “Gaussian Phases in Generalized Coupon Collection”, Adv. Appl. Prob., 42:3 (2010), 994–1012 | DOI

[5] Borovkov A. A., Mathematical Statistics, Gordon and Breach, 1998