Estimating a Number of Cells via a Number of Occupied Ones under Random Choice
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 107-113
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a scheme of the series where support of the distribution and the sample size increase asymptotically proportionally. One knows a number of different elements of the sample only. We give consistent and asymptotically normal estimator of the parameter, defined as the limiting ratio of sample size to the number of elements of the support.
Keywords:
number of different elements, a scheme of the series, consistency and asymptotic normality of the estimator.
@article{VNGU_2014_14_3_a8,
author = {M. G. Chebunin},
title = {Estimating a {Number} of {Cells} via a {Number} of {Occupied} {Ones} under {Random} {Choice}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {107--113},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/}
}
TY - JOUR AU - M. G. Chebunin TI - Estimating a Number of Cells via a Number of Occupied Ones under Random Choice JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 107 EP - 113 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/ LA - ru ID - VNGU_2014_14_3_a8 ER -
M. G. Chebunin. Estimating a Number of Cells via a Number of Occupied Ones under Random Choice. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 107-113. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/