Estimating a Number of Cells via a Number of Occupied Ones under Random Choice
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 107-113
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a scheme of the series where support of the distribution and the sample size increase asymptotically proportionally. One knows a number of different elements of the sample only. We give consistent and asymptotically normal estimator of the parameter, defined as the limiting ratio of sample size to the number of elements of the support.
Keywords:
number of different elements, a scheme of the series, consistency and asymptotic normality of the estimator.
@article{VNGU_2014_14_3_a8,
author = {M. G. Chebunin},
title = {Estimating a {Number} of {Cells} via a {Number} of {Occupied} {Ones} under {Random} {Choice}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {107--113},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/}
}
TY - JOUR AU - M. G. Chebunin TI - Estimating a Number of Cells via a Number of Occupied Ones under Random Choice JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 107 EP - 113 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/ LA - ru ID - VNGU_2014_14_3_a8 ER -
M. G. Chebunin. Estimating a Number of Cells via a Number of Occupied Ones under Random Choice. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 107-113. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a8/
[1] Kolchin V. F., Sevast'yanov B. A., Chistyakov V. P., Random Allocations, Scripta Series in Mathematics, V. H. Winston and Sons, Washington, 1978
[2] Stepanov I. A., “Exact Solutions of the One-Dimensional, Two-Dimensional, and Three-Dimensional Ising Models”, Nano Science and Nano Technology: An Indian Journal, 6:3 (2012), 118–122
[3] Mikhailov V. G., “Asymptotic Normality of the Number of Empty Cells for Group Allocation of Particles”, Theory Probab. Appl., 25:1 (1980), 82–90 | DOI
[4] Mahmoud H. M., “Gaussian Phases in Generalized Coupon Collection”, Adv. Appl. Prob., 42:3 (2010), 994–1012 | DOI
[5] Borovkov A. A., Mathematical Statistics, Gordon and Breach, 1998