On One-Dimensional Boundary Value Problems with Explosive Coefficients and a Specific Net Basis Oriented towards their Solution
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 95-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A net functional basis, based on trigonometry, is offered. This basis is oriented towards a solution of one-dimensional diffusion and diffusion-convective boundary value problems with explosive coefficients in the Cartesian, cylindrical and spherical systens of coordinates. A more general method of investigation of boundary and conjugation conditions with respect to their belonging to principal and natural conditions is proposed. An example of the search for a generalized solution to a boundary value problem by means of the net method with arbitrary net of nodes is given.
Keywords: boundary value problem, functional net basis, arbitrary net of nodes, functional, generalized solution, energy scalar product, sweep method.
Mots-clés : conjugation conditions, principal and natural conditions
@article{VNGU_2014_14_3_a7,
     author = {V. V. Smelov},
     title = {On {One-Dimensional} {Boundary} {Value} {Problems} with {Explosive} {Coefficients} and a {Specific} {Net} {Basis} {Oriented} towards their {Solution}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {95--106},
     year = {2014},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a7/}
}
TY  - JOUR
AU  - V. V. Smelov
TI  - On One-Dimensional Boundary Value Problems with Explosive Coefficients and a Specific Net Basis Oriented towards their Solution
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 95
EP  - 106
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a7/
LA  - ru
ID  - VNGU_2014_14_3_a7
ER  - 
%0 Journal Article
%A V. V. Smelov
%T On One-Dimensional Boundary Value Problems with Explosive Coefficients and a Specific Net Basis Oriented towards their Solution
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 95-106
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a7/
%G ru
%F VNGU_2014_14_3_a7
V. V. Smelov. On One-Dimensional Boundary Value Problems with Explosive Coefficients and a Specific Net Basis Oriented towards their Solution. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 95-106. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a7/

[1] S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, M., 1970 (in Russian)

[2] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover, 1963

[3] V. S. Vladimirov, Equations of Mathematical Physics, Mir Publishers, M., 1981

[4] Yu. M. Laevsky, Method of Finite Elements, Novosibirsk, 1999 (in Russian)

[5] L. J. Segerlind, Applied Finite Element Analysis, John Wiley and Sons Inc., New York–London–Sydney–Toronto, 1976

[6] Smelov V. V., “Construction of a Functional Basis with Automatic Fulfillment of Interface Conditions at Discontinuity Points of Coefficients of an Elliptic Operator”, Russ. J. Numer. Math. Modelling, 27:4 (2012), 387–398

[7] V. V. Smelov, “Bases derived from trigonometry and their advantages”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013), 108–122 (in Russian)

[8] V. V. Smelov, Sturm–Liouville Problems and Expansions of Functions in Rapidly Covergent Series, Izd-vo SO RAN, Novosibirsk, 2000 (in Russian)

[9] V. V. Smelov, “On representation of piecewise-smooth functions by rapidly convergent trigonometric series”, Sib. Zh. Vychisl. Mat., 2:4 (1999), 385–394

[10] G. M. Fichtenholz, Differential und Integralrechnung, v. I, Deutscher Verlag der Wissenschaften, Berlin, 1964

[11] S. K. Godunov, V. S. Ryaben'kiy, Difference Schemes, Nauka, M., 1977 (in Russian)

[12] A. A. Samarskii, The Theory of Difference Schemes, Dekker, New York, 2001