On the Solvability of the Cauchy Problem for a Polynomial Difference Operator
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a variant of the Cauchy problem for a polynomial difference operator. A formula representing the solution to the problem via its fundamental solution is obtained, the conditions for its solvability are given. In particular, in two-dimensional case a rather simple condition in terms of coefficients of the operator symbol is proved. Besides that, a recurrence relation for principal minors of the matrix corresponding to the difference operator is obtained.
Keywords: difference operator, fundamental solution.
@article{VNGU_2014_14_3_a6,
     author = {M. S. Rogozina},
     title = {On the {Solvability} of the {Cauchy} {Problem} for a {Polynomial} {Difference} {Operator}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {83--94},
     year = {2014},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a6/}
}
TY  - JOUR
AU  - M. S. Rogozina
TI  - On the Solvability of the Cauchy Problem for a Polynomial Difference Operator
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 83
EP  - 94
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a6/
LA  - ru
ID  - VNGU_2014_14_3_a6
ER  - 
%0 Journal Article
%A M. S. Rogozina
%T On the Solvability of the Cauchy Problem for a Polynomial Difference Operator
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 83-94
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a6/
%G ru
%F VNGU_2014_14_3_a6
M. S. Rogozina. On the Solvability of the Cauchy Problem for a Polynomial Difference Operator. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 83-94. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a6/

[1] Duffin R. J., “Basic Properties of Discrete Analytic Functions”, Duke Math. J., 23 (1956), 335–363 | DOI

[2] O. A. Danilov, A. D. Mednykh, “Discrete analytical functions of several variables and Taylor expansion”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 38–46

[3] A. A. Samarskii, The Theory of Difference Schemes, Dekker, New York, 2001

[4] Bousquet-Melou M., Petkovšek M., “Linear Recurrences with Constant Coefficients: The Multivariate Case”, Discrete Mathematics, 225 (2000), 51–75 | DOI

[5] E. K. Leinartas, “Multiple Laurent series and fundamental solutions of linear difference equations”, Sib. Mat. J., 48:2 (2007), 268–272 | DOI

[6] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963

[7] M. I. Vishik, “Quasilinear strongly elliptic systems of differential equations with a divergent form”, Trudy Mosk. Matem. Ob-va, 12, 1963, 125–184 (in Russian)

[8] Forsberg M., Passare M., Tsikh A., “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Adv. in Mathematics, 151:1 (2000), 45–70 | DOI

[9] L. Hörmander, “On the division of generalised functions by polynomials”, Arkiv. för Mathem., 3 (1958), 555 | DOI

[10] M. S. Rogozina, “Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces”, J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 256–263 (in Russian)

[11] M. V. Fedoryuk, Asymptotics: Integrals and Series, Nauka, M., 1987 (in Russian)

[12] I. S. Iokhvidov, Hankel and Toeplitz Matrices, Nauka, M., 1974 (in Russian)

[13] S. P. Shary, Course of Computable Methods, Novosibirsk, 2012 (in Russian)

[14] V. P. Il'in, I. M. Lisnyanskiy, “Banded Toeplitz Matrices”, Sib. Mat. Zh., 19:1 (1978), 44–48 (in Russian)