@article{VNGU_2014_14_3_a6,
author = {M. S. Rogozina},
title = {On the {Solvability} of the {Cauchy} {Problem} for a {Polynomial} {Difference} {Operator}},
journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
pages = {83--94},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a6/}
}
M. S. Rogozina. On the Solvability of the Cauchy Problem for a Polynomial Difference Operator. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 83-94. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a6/
[1] Duffin R. J., “Basic Properties of Discrete Analytic Functions”, Duke Math. J., 23 (1956), 335–363 | DOI
[2] O. A. Danilov, A. D. Mednykh, “Discrete analytical functions of several variables and Taylor expansion”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 38–46
[3] A. A. Samarskii, The Theory of Difference Schemes, Dekker, New York, 2001
[4] Bousquet-Melou M., Petkovšek M., “Linear Recurrences with Constant Coefficients: The Multivariate Case”, Discrete Mathematics, 225 (2000), 51–75 | DOI
[5] E. K. Leinartas, “Multiple Laurent series and fundamental solutions of linear difference equations”, Sib. Mat. J., 48:2 (2007), 268–272 | DOI
[6] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963
[7] M. I. Vishik, “Quasilinear strongly elliptic systems of differential equations with a divergent form”, Trudy Mosk. Matem. Ob-va, 12, 1963, 125–184 (in Russian)
[8] Forsberg M., Passare M., Tsikh A., “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Adv. in Mathematics, 151:1 (2000), 45–70 | DOI
[9] L. Hörmander, “On the division of generalised functions by polynomials”, Arkiv. för Mathem., 3 (1958), 555 | DOI
[10] M. S. Rogozina, “Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces”, J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 256–263 (in Russian)
[11] M. V. Fedoryuk, Asymptotics: Integrals and Series, Nauka, M., 1987 (in Russian)
[12] I. S. Iokhvidov, Hankel and Toeplitz Matrices, Nauka, M., 1974 (in Russian)
[13] S. P. Shary, Course of Computable Methods, Novosibirsk, 2012 (in Russian)
[14] V. P. Il'in, I. M. Lisnyanskiy, “Banded Toeplitz Matrices”, Sib. Mat. Zh., 19:1 (1978), 44–48 (in Russian)