Single-Valued $q$-Differentials on Variable Finite Riemann Surface
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 50-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In present article are construction general theory of single-valued functions and $q$-differentials on variable finite Riemann surfaces begun. We constructed all form elementary $q$-differentials. We found dimensions and constructed explicit basis in important two factor spaces. In particular, we found dimension and constructed basis in first holomorphic cohomology group de Rham for 1-differentials.
Keywords: Teichmueller space of finite Riemann surfaces, $q$-differentials, vector bundles, Jacobi manifolds.
@article{VNGU_2014_14_3_a4,
     author = {A. A. Kazanceva},
     title = {Single-Valued $q${-Differentials} on {Variable} {Finite} {Riemann} {Surface}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {50--61},
     year = {2014},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a4/}
}
TY  - JOUR
AU  - A. A. Kazanceva
TI  - Single-Valued $q$-Differentials on Variable Finite Riemann Surface
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 50
EP  - 61
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a4/
LA  - ru
ID  - VNGU_2014_14_3_a4
ER  - 
%0 Journal Article
%A A. A. Kazanceva
%T Single-Valued $q$-Differentials on Variable Finite Riemann Surface
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 50-61
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a4/
%G ru
%F VNGU_2014_14_3_a4
A. A. Kazanceva. Single-Valued $q$-Differentials on Variable Finite Riemann Surface. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 50-61. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a4/

[1] Dick R., Krichever–Novikov-like Bases on Punctured Riemann Surface, Deutsches Elektronen-Synchrotron (DESY) 89-059, May, 1989

[2] Dick R., “Holomorphic Differentials on Punctured Riemann Surface”, Differ. Geom. Math. Theor. Phys.: Phys. and Geom., Proc. NATO Adv. Res. Workshop and 18 Int. Conf. (Davis, Calif., 2–8 June 1990), N.Y.– L., 475–483

[3] Dubrovin B. A., Riemann Surfaces and Nonlinear Equations, v. 1, M., 1986

[4] Krichever I. M., “Methods of Algebraic Geometry in the Theory Nonlinear Equations”, Uspechi of Mathematical Sciences, 32:6 (1977), 180–208

[5] Krushkal S. L., Quasiconformal Mappings and Riemann Surfaces, Nauka, Novosibirsk, 1975

[6] Chueshev V. V., Multiplicative Functions and Prym Differentials on the Variable Compact Riemann Surfaces, v. 2, Kemerovo, 2003

[7] Kazantzeva A. A., Chueshev V. V., “The Spaces Of Meromorphic Prym Differentials on Finite Riemann Surfaces”, Sib. Math. J., 53:1 (2012), 89–106

[8] Alhfors L. V., Bers L., The Spaces of Riemann Surfaces and Quasiconformal Mappings, M., 1961

[9] Farkas H. M., Kra I., Riemann Surfaces, Grad. Text's Math., 71, Springer-Verlag, N.Y., 1992 | DOI

[10] Earle C. J., “Families of Riemann Surfaces and Jacobi Varieties”, Annals of Mathematics, 107 (1978), 255–286 | DOI

[11] Krepitsina T. S., Chueshev V. V., “Multiplicative Functions and Prym Differentials on Variable Tori”, J. of Mathematical Sciences, 198:5 (2014), 546–563 | DOI

[12] Chueshev V. V., Golovina M. I., “Prym Differentials on the Variable Compact Riemann Surfaces”, Math. Notes, 95:3 (2014), 459–476

[13] Chueshev V. V., Pushkareva T. A., “The Spaces of Harmonic Prym Differentials on the Variable Compact Riemann Surfaces”, Sib. Math. J., 55:2 (2014), 379–395