Error Estimation for Stationary Galerkin Method for Semilinear Parabolic Equation with Changing Direction of Time
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 43-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a cylindrical domain $Q\subseteq R^{n+1}$ the first boundary value problem for semilinear parabolic equation with changing direction of time is considered. It is developed stationary Galerkin method for the study of boundary value problem. It is proved the existence and uniqueness of solution of the first boundary value problem in the space $W_{2}^{2,1}(Q)$. Error estimation for stationary Galerkin method is obtained in the norm of the space $W_{2}^{1,0}(Q)$ through eigenvalues of selfadjoint spectral problem for the elliptic equation of second order.
Keywords: stationary Galerkin method, approximate solution, inequality
Mots-clés : estimation.
@article{VNGU_2014_14_3_a3,
     author = {E. S. Efimova and I. E. Egorov and M. S. Kolesova},
     title = {Error {Estimation} for {Stationary} {Galerkin} {Method} for {Semilinear} {Parabolic} {Equation} with {Changing} {Direction} of {Time}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {43--49},
     year = {2014},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a3/}
}
TY  - JOUR
AU  - E. S. Efimova
AU  - I. E. Egorov
AU  - M. S. Kolesova
TI  - Error Estimation for Stationary Galerkin Method for Semilinear Parabolic Equation with Changing Direction of Time
JO  - Sibirskij žurnal čistoj i prikladnoj matematiki
PY  - 2014
SP  - 43
EP  - 49
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a3/
LA  - ru
ID  - VNGU_2014_14_3_a3
ER  - 
%0 Journal Article
%A E. S. Efimova
%A I. E. Egorov
%A M. S. Kolesova
%T Error Estimation for Stationary Galerkin Method for Semilinear Parabolic Equation with Changing Direction of Time
%J Sibirskij žurnal čistoj i prikladnoj matematiki
%D 2014
%P 43-49
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a3/
%G ru
%F VNGU_2014_14_3_a3
E. S. Efimova; I. E. Egorov; M. S. Kolesova. Error Estimation for Stationary Galerkin Method for Semilinear Parabolic Equation with Changing Direction of Time. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 43-49. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a3/

[1] G. Ficera, “The unified theory of boundary value problems for elliptic-parabolic equations”, Math., 7:6 (1963), 99–121

[2] O. A. Oleinik, E. V. Radkevich, “Equation of the second order with nonnegative characteristic form”, Matematicheskij Analiz, VINITI, 1971, 7–252 (in Russian)

[3] S. A. Tersenov, Parabolic Equation with Changeable Direction of Time, Nauka, Novosibirsk, 1985 (in Russian)

[4] I. E. Egorov, V. E. Fedorov, Non-Classical Equations of Mathematical Physics of a High Order, Izd-vo VC SO RAN, Novosibirsk, 1995

[5] I. E. Egorov, P. I. Stepanova, “On the Galerkin method for elliptic-parabolic equations”, Math. notes of YSU, 15:2 (2008), 19–26 (in Russian)

[6] I. E. Egorov, “Application of the Galerkin method for the third boundary value problem for elliptic-parabolic equation”, Math. notes of YSU, 16:1 (2009), 22–27 (in Russian)

[7] I. E. Egorov, E. S. Efimova, “Stationary Galerkin method for parabolic equation with changeable direction of time”, Math. notes of YSU, 18:2 (2008), 41–46 (in Russian)

[8] A. M. Nakhushev, Problems with Shift for the Equations in Private Derivatives, Nauka, M., 2006 (in Russian)

[9] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, M., 1973 (in Russian)

[10] P. V. Vinogradova, A. G. Zarubin, “Error estimation of Galerkin method for non-stationary equations”, Zh. Vych. Mat. i Mat. Fiz., 49:9 (2009), 1643–1651

[11] J. L. Lions, Some Methods for Solving Nonlinear Boundary Problems, Mir, M., 1972