Harmonic Analysis of Nonquasianalytic Operators in Real Banach Space
    
    
  
  
  
      
      
      
        
Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 19-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the real Banach space we consider linear bounded invertible operator, norms of powers of which satisfy the condition of nonquasianalyticity. For this operator, we obtain conditions of existence of non-trivial invariant subspace and decomposability (in Foias sense).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
the real Banach space, operator spectrum, invariant subspaces, Beurling spectrum, decomposable (in Foias sense) operator.
                    
                  
                
                
                @article{VNGU_2014_14_3_a1,
     author = {E. E. Dikarev and D. M. Polyakov},
     title = {Harmonic {Analysis} of {Nonquasianalytic} {Operators} in {Real} {Banach} {Space}},
     journal = {Sibirskij \v{z}urnal \v{c}istoj i prikladnoj matematiki},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a1/}
}
                      
                      
                    TY - JOUR AU - E. E. Dikarev AU - D. M. Polyakov TI - Harmonic Analysis of Nonquasianalytic Operators in Real Banach Space JO - Sibirskij žurnal čistoj i prikladnoj matematiki PY - 2014 SP - 19 EP - 28 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a1/ LA - ru ID - VNGU_2014_14_3_a1 ER -
E. E. Dikarev; D. M. Polyakov. Harmonic Analysis of Nonquasianalytic Operators in Real Banach Space. Sibirskij žurnal čistoj i prikladnoj matematiki, Tome 14 (2014) no. 3, pp. 19-28. http://geodesic.mathdoc.fr/item/VNGU_2014_14_3_a1/
